Formal Specification Comprehension
The Art of Reading and Writing Z
Andreas Bollin, Alpen-Adria Universität Klagenfurt
Dominik Rauner-Reithmayer, Carinthia University of Applied Sciences
Content in a Nutshell

- Motivation
 - Size and Complexity
 - Resistance and a chance

- Comprehending Specifications
 - Understandability
 - Preferences
 - Time/Effort

- A first Study
 - Setting
 - Results

- Conclusion and Discussion
Motivation (1/3)

Size and Complexity

- Our Systems and software are getting to **new dimensions**
 - Voyager … 3 KLOC (1977),
 - Cassini … 10 KLOC (1997),
 - Mars Rover 160 KLOC (2003),
 - ISS … 5 MLOC (2009),
 - Boing 787 … 6.4 MLOC (2011),
 - General Motors GMC … 100 MLOC (2011)

- Nearly **1,100 deaths** attributable to computer errors
 - stemming from poor to no specifications, not from incorrect implementations [McKenzie 01]
Motivation (2/3)

Resistance as no way out

- FS are beneficial artifacts during SW development (validation, verification) and maintenance phases (comprehension, concept identification).

- But,
 - not all stakeholders are able to speak and think in the same technical terms
 - developers do have different preferences in expressing (and documenting) their thoughts
 - even formal specification contain errors

➡️ Every activity raising comprehensibility helps in dealing with resistance
Motivation (3/3)

Problems and challenges:

- Logic, and with it
 - Mistakable Logic Expressions

- Notation
 - Misleading and hard to understand notations [Gravel 90]

\[
\begin{align*}
\text{primes}_1 &= \{n : \mathbb{N} | n \geq 2 \land \neg (\exists m : 2 \ldots n \cdot n \mod m)\} \\
\mathbb{N}_2 &= \mathbb{N} \setminus \{0, 1\} \\
\text{primes}_2 &= \mathbb{N}_2 \setminus \{n, m : \mathbb{N}_2 \cdot n \cdot m\}
\end{align*}
\]

- Comprehensibility
 - Too complex (large) specifications and ill-structured specifications
Comprehending Specifications

• How to deal with this situation?
 • Taking a closer look at “quality” attributes of formal specifications with the focus on comprehensibility
 • The assumption is that, by raising comprehensibility, one is also very likely raising acceptability

Working Definition: A good formal specification is a syntactically and semantically correct specification which enables a lossless mapping between all the concepts in/behind the specification and the mental model of the specified system. The mapping process should not be perceived as exhausting and it should be completed within reasonable time.
The Study

- Guidelines as a way out?
 - Investigate the sense of style in reading and writing formal specifications
 - Which style (of writing) is less error prone

- For the study (conducted during the Winter term 2013) we focused on:
 - KQ1) Do common guidelines support the correct understanding of a formal specification?
 - KQ2) Do common guidelines support an easier and faster understanding of a formal specification?
The Study Setting (1/3)

• Following aspects have been taken into consideration:

• Understandability of mathematical idioms (symbols in Z). Here, we focus on the relational override and the use of functions

• Correct perception of the logical implication (following the observations of [Vinter, Loomes and Kornbrot 98]. Here, we focus on “natural order" [Gravell 91, p.4], logic equivalence and its use in orders that are not natural

• Correct interpretation of incomplete operations

• Correctness of (a subset of) the recommendations of Gravell [Gravell 91, p.12].
The Study Setting (2/3)

- Additionally, correctness of (a subset of) the recommendations of Gravell [Gravell 91, p.12]

 - G1 Prefer clarity to brevity
 - G2 Choose the state so as to minimize the invariant
 - G3 Choose the state to simplify the description of the operations
 - G4 Give an implication its natural order, or avoid implications entirely
 - G5 Give names to important concepts
 - G6 Where the mathematical idiom is commonly understood, use it.
The Study Setting (3/3)

- **Skill of students have been quite high (n=25)**
 - 6 Master, 19 Bachelor
 - 28 European credit points (~ 700 hours) on Math and Theoretical Computer Science
 - overall performance is above 50% of achievable points

- **Two (of 3) on-line questionnaires (Moodle):**
 - Q1: **14 questions** in multiple choice select form
 - Q2: **24 tasks.** In order to minimize the influence of the duration for understanding the **problem domain:**
 1. Description of the example in natural language
 2. Specification of the example in Z
 3. Question to decide if the specification represents the described situation in a correct manner
The Study Results (1/6)

- **Correct Understanding**
 - Mathematical Idioms (89% correctly understood)
 - Logical Implications
 - single implication (83%),
 - equivalent logical form using negation (82.5%)
 - implication contained in another implication (66%)
- **Incomplete Operations** (63% correctly understood)
- **Developers Preferences**
 - G1 Prefer **clarity to brevity**
 - Guideline: do not use Variant 2
 - Study result: variant 2 or variant 3

\[
\begin{align*}
\text{Variant 1:} & \quad s, s': \text{SWITCH} \\
& \quad s' \neq s \\
\text{Variant 2:} & \quad s, s': \text{SWITCH} \\
& \quad (s = \text{off} \land s' = \text{on}) \lor (s = \text{on} \land s' = \text{off}) \\
\text{Variant 3:} & \quad s, s': \text{SWITCH} \\
& \quad s = \text{off} \Rightarrow s' = \text{on} \\
& \quad s = \text{on} \Rightarrow s' = \text{off}
\end{align*}
\]
The Study Results (2/6)

• Developers Preferences (contd.)
 • G2 Choose the state so as to **minimize the invariant**
 • Example used: collection of an Item store
 • Guideline: prefer Variant 2
 • Study result: Variant 1

• G3 Choose the state to **simplify the description** of the operations. Guideline: confirmed
The Study Results (3/6)

• Developers Preferences (contd.)
 • G4 Give an implication its natural order, or avoid implications entirely
 • Guideline: prefer variant 1
 • Study result: Variant 1, but Variant 3 also OK
The Study Results (4/6)

- **Developers Preferences (contd.)**
 - G5 Give names to important concepts
 - Guideline: prefer variant 2
 - Study result: no clear tendency

- G6 Where the mathematical idiom is commonly understood, use it. Guideline: confirmed
The Study Results (5/6)

• **Duration – a first look**
 • We tested for the **time needed** to complete the task of comprehending a specification. Two different settings:
 1. we kept the specification the same and varied the question
 2. we kept the problem description the same, but varied the style of the specification
 • **Results:**
 • Small specifications: no correlation between time and correctness (weak positive, p=0.13)
 • Larger specifications positive correlation

![Comprehension Time Chart](chart.png)
The Study Results (6/6)

• **Duration – a second look**
 We checked for the relation between time needed and skills of the developers
 • **Result:**
 • Negative correlation ($\rho_{\text{Pearson}} = -0.57, p<0.007$)

We checked for the relation between complexity and time needed
Results:
• Influence on time
• Influence on correctness
Conclusion

• The study confirmed by large that common guidelines do support comprehensibility, but
 • not all of them are valid (at least in our setting)
 • 3 guidelines could not be confirmed totally (“prefer clarity to brevity”, “choose the state so as to minimize the invariant”, “give names to important concepts”)

• We found another guideline:

 “When giving a specification of an operation, always make it total!”

• This study is just a first step in a series of necessary investigations
 • We think that comprehension time and complexity are related.
 • Complementary guidelines will have to follow
Thank you!

Contact:

Andreas.Bollin@uni-klu.ac.at
D.Rauner-Reithmayer@fh-kaernten.at
References

