8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 1

Software Inspections W e Can Trust

David Lorge Parnas, P.Eng.

NSERC/Bell Industrial Research Chair in Software Engineering
Director of the Software Engineering Programme
Department Of Computing And Software, Faculty of Engineering,
McMaster University Hamilton ON Canada L8S 4K1

Software is devilishly hard to inspect. Serious errors can hide for years. Consequently, mar
are hesitant to employ software in safety-critical applications and all companies are finding
correcting and improving software to be an increasingly burdensome cost.

This talk describes a procedure for inspecting software that consistently finds subtle errors |
software that is believed to be correct. The procedure is based on four key principles:

* All software reviewersctively use the code.

» Reviewersexploit the hierarchical structure of the coderather than proceeding sequentially
through the code.

» Reviewerdocus on small sections of coderoducing precise summaries hat are used when
inspecting other sections. The summaries provide the “links” between the sections.

* Reviewersproceed systematicallyso that no case, and no section of the program, get:
overlooked.

During the procedure, the inspectors produce and review mathematical documentation.
mathematics allows them to check for complete coverage; the notation allows the work to procee
small systematic steps.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 2

Responsibilities of (Software) Engineer s

e To understand the properties of their products thoroughly.

 To follow established rules of good practice when designing ar
building products.

* To apply theory where it has been demonstrated to lead to better,
safer, products.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 3

Engineering is Not Mana gement

The art of system management is the ability to get things built witho
knowing exactly what they are.

The engineer must thoroughly understand the properties of the product

Software projects are hard to manage - especially if they are bac
designed, but...

Unless we have good Engineers, the best managers will not be able
successfully manage these projects.

Inspections have to be carefully managed but executed by Engineers.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 7

When is Software Critical?

“Critical” is not necessarily “safety critical”

Other types of critical programs:
* Mass distributed programs in warranty situations

 Critical kernels in many systems

e Financial Systems

o Security (Privacy, Data Protection) programs

e any system where a failure may lead to a lawsuit.

The common property of all of these examples is that the cost of a failure
high.

If you value your reputation, your work may be critical.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 3

The Ciritical-Software T ripod

(1) Precise, well organised, mathematical documentation with system:s
review

(2) Extensive Testing
« Systematic Testing-quick discovery of gross errors

« Random Testing -discovery of shared oversights and reliability assessmg

(3) Qualified People and Approved Processes

The Three Legs are complementary

The three legs are all needed.

The stool falls over if any leg is forgotten.

The third leg is the shortest.

It's the shortest leg that we should worry about.
Today we discuss only leg (1).

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 9

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)
9)

Why Conventional Re views are Ineff ective

The reviewers are swamped with information.

Most reviewers are not familiar with the product design goals.
There are no clear individual responsibilities.

Reviewers can avoid potential embarrassment by saying nothing.

The review is conducted as a large meeting where detailed discussi
are difficult.

Presence of managers silences criticism.

Presence of uninformed reviewers may turn the review into a tutor
Specialists are asked general questions.

Generalists are expected to know specifics.

(10) The review procedure reviews code without respect to structure.

(n lines per hour)

(11) Unstated assumptions are not questioned.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 10

Effective Re views are Active Re views

A dilemma:

e Errors in programs and design documents should be fooefre the
documents/systems are used.

« Errors in programs and documents are usually forhdnthe documents are
used.

Another dilemma:
e Everyone’s work requires review!
* It's easier to say “OK” than to find subtle errors!
« Reviewer’s approval is not reviewed.

One more dilemma:
* No individual can review all aspects of a design.

 When working in a group, people tend to relax in the knowledge that othe
are also working the problem.

Solutions:

* Make the reviewers use the documents.

« Make the reviewers document their analysis.

« Have specialised reviews. Ask the reviewer about things that they know.
 Make the reviewers provide specifics - not just a bit.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 11

Previous W ork on Inspections

Best known approach Fagan - 1976.
Many followers - new book by Gilb.

Explicitly focus on thananagementaspects.

* Who should be there?

What are the roles of the participants?
How long is a meeting?

How fast do you work?

Forms for reporting errors?

Read the code in sequence and paraphrase.
Paraphrases are informal.

Most observers find these more effective than conventional reviews
walk-throughs, but...

... can we do better?

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 12

Parnas/NRL/AECB/AECL/Ontario Hydr o

Focus on thengineeringside.

Depend on hierarchical decomposition rather than sequential reading.

Use mathematical notations to provide precise descriptions rather tf
iInformal paraphrases.

Produce usefybrecisedocumentation as a side effect.

Proceed much more quickly if the documentation was produced by t
developers.

Insures that cases and variables are not overlooked.

Applies simple mathematics to check for completeness aspects.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 13

Active Re view of Design Documents

Base the review process on the nature of the document.
(1) Begin by identifying desired properties.
(2) Prepare guestionnaires for the reviewers. Ask them questions that:

 make them use the document.
 make them demonstrate that the desired properties are present.
» ask for sources of information to support the answers to other questions.

For example:
» Ask reviewers to identify the domain of the program
» Ask reviewers to identify “error”’ cases.
« Ask reviewers to explain why no other error cases are possible.

« Ask reviewers to explain why the behaviour required for each case is t
desired behaviour.

For more information read [1].

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 14

Inspecting Pr ograms

It is the code that “hits the road”.

Getting the requirements right, the structure right, the interfaces right, t
documentation right, etc. are all important \magt have to check the code
The same naew principles applyviz.

« Make the reviewers use the material they review.

 Make the reviewers answer questions.

e Ask the reviewer about things that they know.

* Make the reviewers provide specifics.

We compare completed programs with previously reviewed specificatior
We ask some reviewers to produce precise descriptions.

We ask other reviewers to show that the descriptions match t
specifications.

It is hard work but it produces results.
*\We get good documentation for future use.

*We find errors in the best industrial code - programs that were consider
correct.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 15

Our Code Inspection Pr _ocess

(1) Prepare a precise specification of what the code should do - a progr
function table.

(2) Decompose the program into small parts appropriate for the “displ.
approach” [2].

(3) Produce the specifications required for the “display approach”.

(4) Compare the “top level” display description with the requiremer
specification.

Obsenations:

e You can’t inspect without precise requirements.

Step (2) would already have been done if you use the display method °
documentation.

Step (3) is truly an active design review

All reviewer work is itself reviewable.

If you did not already have it, the by-product is thorough documentation.
It's a bunch of small steps and very systematic.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 16

Descriptions vs. Specifications

An actual descriptiols a statement of somgctualattributes of a product, or
set of products.

A specificatioris a statement of all propertiesquiredof a product, or a set of
products.

In the sequel, “description”, without modifier, means “actual description’
The following are implications of these definitions:

» A description may include attributes that are not required.
« A specification may include attributes that a (faulty) product does not posses

 The statement that a product satisfies a given specification may constitut
description.

;I'he third fact results in much confusion. A useful distinction has been
ost.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 18

Do We Need New Semantics Theories For Pr _ogramming?

Not for the practical software engineering problems that | see.

| can find 30 year old theory that works for the problems that | will describ
today.

Semantic theory has failed to describe real languages, but (in my opini
the fault lies with the languages.

We do need improvements in:

 the notation used to describe actual programs.

* the ability to describe behaviour in terms of the values of observable variab
- nothing else.

e convenient ways to deal with all aspects of termination including nor
deterministic non-termination.

What follows is mathematically equivalent to sorey old ideas, but has
some practical advantages.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 19

A Mathematical Interlude - LD-relations.

A binary relationR on a given set U is a set of ordered pairs with bott
elements from U,
l.e. RO U xU.

The set U Is called thdniverse of R

The set of pairs R can be described byfaracteristic predicateR(p,q),
.e. R ={(p,q): UxU [R(p,q)}.
Thedomainof R is denoted Dom(R) and is {4} [R(p,q)]}.

Therangeof R is denoted Range(R) and is

{q | Db [R(p,q)]}-

Below, “relation” means “binary relation”.

AAimited-domain relation(LD-relation) on a set, U, is a pair, L = (RC,)
where:

R, , therelational componentf L, is a relation on U, i.e.,RJ U x U, and
C., the competence seif L, is a subset of the domain of Ri.e. G L

Dom(R).

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 20

Using LD-Relations as Bef ore/After
Behavioural Descriptions (1)

Let P be a program, let S be a set of states, anddet (Rp Cp) be an LD-
relation on S such that

(x,y) U Rpif and only if <x,...,y> Is a possible terminating execution of P,
and

X [Cp if and only if P is guaranteed to terminate if it is started in stdte s
L, Is called the.D-relation of P

By convention, if G is not given, it is,
(by default), Dom(Ig).

With this convention, our approach is upwards compatible with th
“cleanroom” approach for dealing with deterministic programs.

1 Please note thatds notthe same as the precondition used in VDM [4].
Sy is the set of states in which the termination of P Is certain.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 21

Using LD-Relations as Bef ore/After
Behavioural Descriptions (2)

The following follow from the definitions:

o |f P starts in x and X1 Cp P always terminates; if (x, Y}l Rp P may
terminate iny.

e |If P starts in x, and XJ (Dom(R») — Cp), the termination of P IS non-
deterministic; in this case, if (X, Y)) Rp when P is started in X, it may
terminate in y or may not terminate.

o |f P starts in x, and Xl Dom(Ry), then P will never terminate.

By these conventions we are able to providemplete before/after
descriptions ofany program but retain a simpler representation to use fc
those cases that arise most often.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 22

Specifying Pr ograms (1)

Specifications magllow behaviour not actually exhibited by a satisfactory
program.

We can also use LD-relations as before/after specifications. To underst
the meaning of a specification, you must understand what “satisfie
means.

Let L, = (Rn Cp) be the description of program P.
Let Sp called apecificationbe a set of
LD-relations on the same universe and

Lg = (Rg, Cg) be an element of S.

We say that

(1) Psatisfies an LD-relatioh g, If and only if
CS [] Cp and % [] Rs, and

(2) Psatisfies a specificatio, if and only if
L satisfies at least one element of S.

Often, S has only one elemenitS = {L g} Is a specification, then we can also call
L 5 a specification.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 23

Specifying Pr ograms (2)

The following follow from the definitions:

» A program will satisfy it's own description as well as infinitely many other LD-relations.

An acceptable program mudOtterminate when started in states outside Dagh(R

An acceptable program must terminate when started in states(idd] Dom(Rp)).

An acceptable program may only terminate in states that are in Raj)ge(R

A deterministic program can satisfy a specification that would also be satisfied by a nc
deterministic program.

Note the following differences between the description and the
specification of a program.

* There is only one LD-relation describing a program, but that program will satisfy many distin
specifications described by different LD-relations.

 An acceptable program need not exhibit all of the behaviours allowed g Rg).
 An acceptable program may be certain to terminate in states outsi¢€<{3 | Cp).

The intended use of each LD-relation (specification or descriptrarst be
stated explicitly!

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00
InspectwithNever.fm

= McMaster University
Tabular Descriptions and Specifications

24

Specification br a seakch program

ONC(x, B)

(Oi, B[i]=x) [(O, (1<i<N) O B[i]#Xx))
I B[I]=x true
present’= true false
Description of a seach program
(Oi, B[i]=x) (O, ((1<i<N) O B[i]#x))
I (BI] =x) U
(O, ((j <i<N) true
O B[i] #x))
present’= true false

ONC(x, B)

The above is one of many kinds of tables!

Simple tables like thiandestatethe advantage.

These have proven “practitioner appeal”

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 25

Readers and Writer s

Formal methods discussions emphasise program development.

A successful program will have more readers than writers, because it will
maintained for many years.

The needs of reviewers and maintainers, are as important as the needs of prog
designers.

Programs should be presented in a way suitable for review and maintenance.

Proper decomposition into modules will reduce the complexity and length
programs.

But, some may still be quite long.

We present a documentation method for non-trivial, long, well-structure
programs.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 27

The limits of human comprehension

Human beings cannot easily understand long programs.
Studying a long program, we mentally decompose it.
We provisionally, assign a function to each part.

We try to convince ourselves that, if each part implements its assigned functis
the whole program is correct.

We then try to confirm our starting hypothesis, and iterate until exhausted
Reviewer should not have to guess a program’s structure.

Program should be presented as a collection of small parts.

Function of each part should be precisely stated.

It should be possible to review those small parts separately.

Reviewer’s responsibility is checkirsgnall fragments.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 29

The concept of displa ys

Designers to present a program as a set of displays.
Well-structured program: short text invoking other programs.
All programs can be short;

A displaypresents a program so that its correctness can be examined in isola
from other displays.

A display consists of three parts:

(1) A description of what the program should do.
(2) the program itself.
(3) descriptions of subprograms invoked by this program.

A set of displays will be considerecbmpleteif, for each description of a non-
standard subprogram found in part (3), there exists a display in which tt
specification forms part (1).

Completeness, in this sense, can easily be checked mechanically.

Verification of the correctness of a set of displays is reduced to a set of sma
tasks

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 30

Why use The Functional Appr oach

The display method is independent of the specification technique.
The display method is independent of programming language.

It works best with the functional approach.

[e.g. H.D. Mills, N.G. de Bruijn, Majster-Cederbaum,].

Functional Approaches “scale up” because there are no special primit
programs.

It can be applied even if the names represent huge programs.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 31

Isn’t Stepwise refinement enough?

Stepwise refinement leads to long programs [Wirth example].
Stepwise refinement leads to repetitive programs.
Displays with functional specifications avoid these pitfalls.

NEVER write a long program!

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 32

Hierar chical contr ol structure in pr _ograms

Program: text describing sequence of state transitions in a computer.
“Structured Programming” constructs have three very useful properties:

(1) programs constructed using them can be decomposed into a hierarch
parts (with lower level parts completely contained in an upper level pa
using simple parsers; those parsers need not even distinguish
identifier from another,

(2) the semantics of the total program can be determined from the seman
of its parts, using simple operations (cf. e.g. [14, 15]).

(3) semantics can be determined in a simple order: inner parts first.

The above properties make it easier to study a long structured program car
understood.

The Display Method is intended to be used for programs that have the
properties.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 33

Use of data abstractions

The best structured program will be difficult to explain and understand if it |
presented in terms of complex data structures.

Data structures should be hidden by the introductiabsfract data types

Precise program documentation is not possible unless the abstract data
Interfaces are precisely documented.

Our examples have been selected so that they can be understood withou
understanding of module specifications.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00
39

InspectwithNever.fm = McMaster University

Decomposition

(integer array H[1:N];

(" (integer c; integern; n 1; h
it (nsN
(
(" (integer u;integer I; booleanp; |1 O 1;c0 0;
it (udl+n-1;
(USN - (
(" (integeri; i 0 O; pO true;)

it (i<Cu-1+1)y20-

(A[l+i] =A[u-i] - (0 i+1[)

| A[l+i] 2 Alu-i] — (pO false ®))
| Qu-1+1)20<i_®)

) y,
| Gp - skip|p- cO c+l);l O I+1;)
|u>N ~ @)
1) y
| Hn]O c;n0 n+1;)
In>N- @)
ti) J

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 40

Displa y: An Example

Problem: ctpaE

true

c' = card({l | pal(Al,n +1 - 1)}
H. G

ONC(n,A)

a. card(x), where x is a set, is the number of elements in x.

Solution: ctpaE
(integer u, l; booleanp; | O 1; c O;

it@wodl+n-1;

(USN - (palul; Gp - skip | p - cU c+l);
| O [+1;

[u>N - e))

t)

palul=:NC(l,u,A) O (p’ = pal(AJ,u)

where

pal(A,b,c)=((1<b<c<N) [
(00, 0<i<lc-b+1)2L0 Alb+i]=A[c-i])))

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 41

Displa ys: An Explanation

The top part of each display is the specification for the program in tl
middle.

The program in the middle is kept small by removing sections, creating
display for them, and including their specification in the bottom part.

The bottom part contains a specification of these invoked programs.

To check a display determine the description of the program in the midd
and see If it satisfies the specification at the top. In doing this, use t
specifications of the invoked programs, not their text.

To check a set of displays, make sure that every specification at the bott
of one display is at the top of another. The exceptions:

« standard programs
* primitive programs
Completeness can be checked mechanically.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00
InspectwithNever.fm

= McMaster University
Tabular Description of Sample Code

Table 1

|OKTT| = .FALSE.

(|OKTT| = .TRUE.) AND (|OKTT|=.TRUE.) AND .

NOT !NoSensTrip!

INoSensTrip!)

B(‘|PTB|,||IDOW1||) B(‘|PTB|,||DOWL1]| Table 4 B(‘|PTB,||[DOW1]|
OR.‘#TMASK('|PTB|)#) OR.‘#TMASK('|PTB|)#)

B(*#CN#,||[DOW2][") B(#CN#,’|[DOW2][) Table 4 B(#CN#,'|[DOW2][)

B(‘#CND#,|[DOW2][") B(‘#CND#,'|[DOW2]|) Table 4 B(‘#CND#,'|[DOW2]|)

OR.#TMASK(|TIB|)#))

AND.#FMASK(|TIB|)#))

IIEX|| |IEX|| .OR. IMASK| |IEX|| .OR. |MASK| IEX|| .OR. IMASK|
[HI1| ‘(HI| YIHTLG)/ - |HYS] “JIHTL(S)/ - [HYS]
IHI2| HI2| “SIHTL(S)/ “JITHL(S)//
|LO1| ‘|LO1| “JILTL(S)// “JILTL(S)/
|LO2|" |LO2| “JILTL(S)/ = ‘|HYS] “JILTL(S)/ + ‘|HYS]
[IMC]| ‘| IMC]| Table 4 0
[IPCII '||PC|| Table 4 0
B(j,|STBV[), j = {|STB| +j-1, i in {1...5} | B(j,|STBV]) Table 3 Table 3
B(,ISTBV]), B(,(ISTBV]) BG,(IISTWI|
NOT (j in {|STB| +i-1}, i in {1...5)) AND. ‘|UM)) AND. ‘|UM))
B(|STB| +i-1,||STW]["), i in {1...5} B(|STB| + i-1, Table 3 Table 3

ClISTW|| .OR. JUM]))
B(,|[STWI||"), NOT (j in {|STB| +i-1}, | B(i,({ISTW|| .OR. JUM])| B(,||STWI|) B(i,||STWI|)
B(TIB|[TIWI[) B(TIB,([[TIW]| B(TIB, (I TIW| B(TIB,(|[TIWI|

AND.#FMASK(|TIB|)#))

IHIFL...5)|I

|IHIF(L...5)||

Table 2

Table 2

6

ILOF(L...5)||

|ILOF(L...5)||

Table 2

Table 2

46

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00

InspectwithNever.fm = McMaster University a7
Table 2
IAbvHIHys(i)! !'InHiHys(i)! !'InNorm(i)! !lInLoHys(i)! !'BlwLoHys(i)!

[[HIF@)]||’ .FALSE. 1HIF®@)| .TRUE. .TRUE. .TRUE.

[ILOF®)| .TRUE. .TRUE. .TRUE. ‘|ILOF()]] .FALSE.
Table 3

NOT !SensTrip(i)! ISensTrip(i)!
B(j,|STBV]) B(,([ISTW|| .OR. B(,([ISTW]|| .AND.

HTMASK()# .AND. ‘|UM])) | ‘#FMASK(j)# .AND. ‘|UM]))

B(|STB| +i-1,||STW|]) | B(|STB| + i-1,(||STW|| .OR. | B(|STB| + i-1,(||STW|| .AND.
HTMASK(|STB| +i-1)#) | ‘#FMASK(|STB| + i-1)#))

Table 4
Modes:
A* =T (IIMC]| DEL|) OR (|MC|| < 0) OR
(lIPC|| + 1 ‘IPCL]) OR (JIPC|| + 1 < 0)]
A NOT *A*
IPCII’ |PCL| IPCJl +1
[IMC]F |DEL| [IMC]]
B(|PTBJ,||[DOW1||) B(|PTB,(‘||DOW1|| .AND.#FMASK(|PTB|#)) B(‘|PTB|,/||[DOW1|]
B(‘#CN#,||DOW?2||") B(‘#CN#,(‘{|DOW?2|| .AND. #FMASK(‘#CN#)#)) B(‘#CN#,‘[|DOW2||
B(#CND#,||DOW2]|") B(#CND#,(‘||DOW2|| .AND.#FMASK(#CND#)#)) | B(#CND#,'||[DOW2]|

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 48

Structure and Inspection

Well-structured programs are easier to decompose. They can
decomposed by purely syntactic means.

Well-structured programs are much easier to inspect.
Inspection encourages good structuring.

Inspection suggests structural improvements.
Inspected programs are easier to maintain.

Modified programs need not be completely re-inspected. The parts t
must be inspected again can be easily identified.

The cost of future maintenance is greatly reduced.

The definition of “well-structured” should not be based on the absence
presence of certain control structures. It has to do with the ease
decomposition. [2]

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 49

Our Initial Experience:
Darlington Nuc lear Power Generating Station

1

Three control systems in Canadian reactors:

e one normal control system
 two independent shutdown systems

Safety analysisssumegontrol system will fail. Only shutdown systems
are considered safety-critical.

Previous shutdown systems were analogue and relay systems.
At Darlington they are software controlled.

Each Software System has a simple task.

Their designs are “diverse”.

The systems are more complex than their predecessors with the result
AECB? could not be confident of their trustworthiness.

How can we increase thawkd of confidence?

L Discussed in more detail in [4] and [3].
2 Atomic Energy Control Board of Canada

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 50

Why We Could Not Use English

The following type of sentence was found in the requirements documen

“Shut off the pumps if the water level is above 100 meters
for 4 seconds”

What does this simple sentence mean?

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 51

Three Reasonab le Interpretations:

“Shut off the pumps if the mean water level over the past 4
seconds was above 100 meters”.

[(J1, WL(HdL) =4 > 100]

“Shut off the pumps if the median water level over the past 4
seconds was above 100 meters”.

(MAX (WL(t)) + MIN (WL(t))) = 2 > 100

[t-4,1] [t-4,1]

“Shut off the pumps if the “rms” water level over the past 4
seconds was above 100 meters”.

«/ 0T, WL@md ~4) > 100

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 52

A Four th (Unreasonab le) Interpretation:

“Shut off pumps If the minimum water level over the past 4
seconds was above 100 meters”.

MIN ., 1 [WL()] > 100

This Is the most literal interpretation!

It is a disaster waiting to happen!

 If you use natural languages, there are thousands of such phra
waiting to “bug” you.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 53

The Inspection Pr ocess at Darlington

Four teams:
(1) Application Experts
(2) Programming Experts
(3) Verifiers
(4) Auditors

Roles of the teams:
(1) Produces requirements tables.
(2) Produce Program Function Tables (Displays).
(3) Show (1) = (2) and that (2) are correct.
(4) Audit the “proofs”.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 54

Subsequent Experience

In classes on this method, we have applied this to numegmnasll
iIndustrial programs that were believed to be correct.

In most cases, we found unexpected errors.
In some cases, the participants could not state the requirements.

In other cases, the program could not be decomposed (machine code
documentation).

| believe that one program was correct.
In all cases, we could improve the program.

We have found errors in textbook programs, library programs, and we
used and tested programs.

No process is perfect, but this one engenders confidence. It produces c¢
that people trust.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 55

What Makes Things Har d?
Variables with no names.

Variables with long names or characterising expressions.
Quantification over indices rather than elements.
Programs that are not understood.

Programs that are badly modularised.

Self-referencing data structures

These can all be fed!

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 56

Essential P oint: Divide and Conquer

The initial decomposition is essential. Attempts to simply scrutinise tr
program fail.

Trying to read the program the way a computer would is much le
effective. Logically connected parts may be far apart.

The use of tables is essential. It breaks things down into simple cases
that

e \We can be sure that all cases are covered.
 Each case is straightforward

We consider all variables, but one at a time.
We consider all cases, one at a time.

We can take “breaks”, go home and sleep, even take holidays, withe
losing our place.

Using displays and tabular summaries is far more work than Fagal
English paraphrasing, but it imposes a discipline that helps.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University 57

The Other Essential P_oint:
Precise , Abstract Descriptions

Having lots of little parts is not enough.
We have to be sure that the parts fit together.
We have to be able to do that without page-flipping.

Each part's behaviour must be precisely summarised without givir
iIntermediate states.

We must be sure that the description at the bottom of one display will |
identical with that at the top of another display.

These global checks can, and have been, mechanised.

Precise descriptions are painstaking work, but if quality IS importar
they are essential.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 58

It's not al ways easy!

The most critical step, besides decomposition, is finding a goc
representation for the state space.

It is not always worthwhile.
There are informal variations.

It is a capability that your organisation should have.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 62

Displa ys

A displayis a document that consists of the following three parts:

e P1: a specification for the program presented in this display,

« P2: the program itself, in which names of other programs may appear; we w
call these named programssibprogramsand say that they anavokedby this
program,

« P3: specifications of all non-standard subprograms invoked in P2.

A standardsubprogram is the one that does not require a specification.

If an invoked subprogram is not standard, its specification appears as P1
another display.

A name in P2 may represeagither a procedure call or a macro.

To avoid repetition of information on more than one display, we write it in
lexicon

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 63

Completeness and Correctness

A display is said to beorrectif program P2 satisfies specification P1 wheneve
the subprograms invoked in P2 satisfy the corresponding specifications in P3.

A set of displaygfor a given programjs completeif for each specification of a
non-standard subprogram found in P3, of a display, there is a display where 1
specification is P1.

A program (presented as a set of displays)correctif this set of displays is
complete and each of the displays from this set is correct.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 64

Conventions

If R 1s a relation, then:

e “R” denotes the set of ordered pairs that constitutes this relation,

* “R(x,y)" denotes the characteristic predicate of the set R.

Let P be described by an LD-relation L = (R, C).

Let and let v, ..., v be program variables in P which form its data structure, v -
(V4, ...,). Then:

e “‘v;” (to be read “y before€) denotes the value of the programming variable v
before an execution of P,

« “vi " (to be read “v after’) denotes the value of the variable after a
terminating execution of P.

Each pair in R will be of the form (v, V).
We often write “R(,)” as an abbreviation of R((‘a,'b,‘c, ...), (a’,b’,c’, ...)).
NC(Vy, .., M) = (Vv =‘vy O... O ='Vy)

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 65

Parameter s and side-eff ects

The specification of the procedure invocation will be written in termsacitial
parameters.

In the declaration of this procedummal parameters will be used.

Both, the specifications of subprograms appearing in the declaration, &
statements in the declaration body must be written in terms of the form
parameters of the procedure (and its other local or non-local objects).

For sake of simplicity we will forbid any form of aliasing, e.g.:

 |f more than one parameter is called by variable, then the actual parame
must be different variables.

If there are side-effects, then a variable external to the procedure body may no
passed as a parameter called by variable.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 66

DISPLAY 1

Specification

Find(x, A, j, present)
R(,)=(@<sn)0O0i[@A<i<n)O (Al]<‘Ali+1])]) O

Ol@<isn) OCAl]=%)]=

true false
i | ‘Al =X true
present’ = true false ONC(x, A)

Program

Procedure declaration:

procedure Find(e : integer; V : vector; var index : integer; var found : Boolean);
var low, high : integer;
begin
Initialization; Body
end {Find}

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 67

DISPLAY 1 (Continued)
Program (Repeated)

Procedure declaration:
procedure Find(e : integer; V : vector; var index : integer; var found : Boolean);
var low, high : integer;
begin
Initialization; Body
end {Find}
RORRRRNNR RN RN RN RN R R R R R R nnnnnnnn e n e nn e e nn e N nn e n e nnn e nn e nnn e n e nnnnnnnn e e e n e e e nnnnnnnnnnnn e nnnnn e e nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Specifications of Subprograms

external variables: e, V, index, found, low, high (on Display 4)

Ri(,) = (low’ = 1) O (high’ = n) O (found’ = false) O (index’ = 1) ONC(e, V)

external variables: e, V, index, found, low, high (on Display 2)

RZ(i) =
((low < *high) O (found =false) O Ti [(low < i < ‘high) O (V[i] € ‘V[i+1])]) O

O [(low <i<‘high) O('V[i]=‘e)]=
true false
index’ | ‘V[index'] = ‘e true
found” = true false
low’ | true true
high’ | true true ONC(e, V)

END OF DISPLAY 1

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00

InspectwithNever.fm = McMaster University = 68
DISPLAY 2
Specification
Body external variables: e, V, index, found, low, high (from Display 1)
RZ(i) =
((low < ‘high) O (‘found =false) O0i [(‘low < i <‘high) O (‘V[i]<V[i+1])]) O
O [(low <i<‘high) O(V[i]="e)]
true false

index’ | ‘V[index'] = ‘e true

found” = true false

low’ | true true

high’ | true true ONC(e, V)

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 .
InspectwithNever.fm = McMaster University = 69

DISPLAY 2 (Continued)
Program (Repeated)
New variable (to be declared in the embedding bloe&):med : integer;

Program statements:

{Body}

while not found and (low < high) do begin
med := (low + high) div 2;
Test

end

Specifications of Subprograms

external variables: e, V, index, found, low, high, med (on Display 3)
Rs(,) = (‘low < ‘med < ‘high) O
‘V['med]

< ='e >
index’ | true index’ = ‘med true
found’ ‘found true ‘found
low’ ‘med + 1 ‘low ‘low
high’ ‘high ‘high ‘med -1 ONC(e, V, med)

END OF DISPLAY 2

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00

InspectwithNever.fm = McMaster University = 70
DISPLAY 3
Specification
Test external variables: e, V, index, found, low, high, med (from Display 2)
Rs(,) = (‘low < ‘med < ‘high) O
Vimed]
< ‘e =‘e > ‘e
index’ | true index’ = ‘med true
found’ ‘found true ‘found
low’ ‘med + 1 ‘low ‘low
high’ ‘high ‘high ‘med -1 ONC(e, V, med)
LR N RN RN RN RN R NN R RN RN RN RN RN RN R NN N RN RN RN RN RN R RN R RN RN RN RN RN}
Program
{Test}

if V[med] < e then
low:=med + 1
else
if V[med] > e then
high :=med -1
else begin
index := med;
found := true
end
RORRRRNNR RN RN RN RN R R R R R R nnnnnnnn e n e nn e e nn e N nn e n e nnn e nn e nnn e n e nnnnnnnn e e e n e e e nnnnnnnnnnnn e nnnnn e e nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Specifications of Subprograms
Empty
END OF DISPLAY 3
DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00

InspectwithNever.fm = McMaster University 71
DISPLAY 4
Specification
Initialization external variables: e, V, index, found, low, high (from Display 1)

R;i(;) = (low’ = 1) O (high’ = n) O (found’ = false) O (index’ = 1) ONC(e, V)

Program
{Initialization}
low :=1;
high :=n;
found := false;
index := 1

Specifications of Subprograms
Empty

END OF DISPLAY 4

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00

InspectwithNever.fm

LEXICON

A. Pascal external definitions and declarations

const n = n; {literal integer is to be written hgre

type vector = array[1..n] of integer;

var x, j : integer; A : vector; present : Boolean;

INDEX
Name Used in
A DO, D1, L,
Body D15 D2,
e D1, D2, 5, D3, D4
Find D1,
found D1, D2, D3, D4
high D1, D2, D3, D4
index DL, D2 5, D3, D4
Initialization D1, 3, D4
i DO, D1, L,
low D1, 3, D2, D3, D4
med D23, D3
n DO, D1, 5, D4, Ly
present DO, DY, L,
Test D23, D3
Y% D1,3, D2, 5, D3, D4
vector DO, D%, L,
X DO, D1, L,

McMaster University

72

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 88

Conclusions

Programs must be understood in small chunks
Programs should be presented in small chunks
NEVER read (or write) a long program.

Precise specifications/descriptions are essential
Size of specification not based on program size.

Without precise descriptions of program structure, even great programmers \
err.

Correctness can be checked “by head”
Completeness, consistency, can be checked by machine.

Tools advantageous in daily use.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 89

Review: What m ust y ou do

(1) Begin with a specification of what you want the critical program to d
(2) Decompose the program:

* Introduce modules/data abstractions/objects wherever possible and pro\
abstract specifications for them

« Use hierarchical decomposition as demonstrated earlier.
(3) Produce a set of displays based on the decomposition.

(4) Make sure that the displays are complete and consistent
* Every specification at the bottom of a page must appear at the top of anothe
* There can be only one implementation display for each program.

(5) Verify/Inspect each display. Use tabular structure to decompose |
iInspection process.

(6) When errors In specifications are found, mark all displays that incluc
those specifications as requiring a repeat inspection.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

8 June 2002 16:00 _ _
InspectwithNever.fm = McMaster University " 90

Some Sug gested Reading

(1) Parnas, D. L., Weiss, D. M., “Active Design Reviews: Principles an
Practices”, Proceedings of the 8th International Conference or
Software Engineerind-ondon, August 1985.

Also in Journal of Systems and Softwabecember 1987.

(2) Parnas, D. L., Madey, J., Iglewski, M.,
“Precise Documentation of Well-Structured Programs”,
IEEE Transactions on Software Engineerinyol. 20, No. 12,
December 1994, pp. 948 - 976.

(3) Parnas, D. L. “Inspection of Safety Critical Software using Functio
Tables”, Proceedings of IFIP World Congress 1994, Volume I, Augu:
1994, pp. 270 - 277.

(4) Parnas, D. L., Asmis, G.J.K., Madey, J., “Assessment of Safety-Critic
Software in Nuclear Power Plantduclear Safetyol. 32, no. 2, April-
June 1991, pp. 189-198.

DEPARTMENT OF COMPUTING AND SOFTWARE® SOFTWARE QUALITY RESEARCH LABORATORY CONNECTING THEORY WITH PRACTICE

	Decomposition
	(integer array H[1:N];
	(integer c; integer n; n ‹ 1;
	it (n £ N Æ
	(
	(integer u; integer l; boolean p; l ‹ 1; c ‹ 0;
	it (u ‹ l + n -1;
	(u £ N Æ (
	(integer i; i ‹ 0; p ‹ true;
	it (i < Î(u - l +1)¸2˚ Æ
	(A[l+i] = A[u-i] Æ (i ‹ i + 1;*)
	| A[l+i] ¹ A[u-i] Æ (p ‹ false; l))
	| Î(u - l +1)¸2˚ £ iÆl)
	ti)
	;
	(Øp Æ skip | p Æ c ‹ c+1); l ‹ l+1; *)
	| u > N Æ l))
	ti)
	;
	H[n] ‹ c; n ‹ n +1;*)
	| n > N Æ l)
	ti)
)

	Display: An Example
	Problem: ctpal º
	card({l | pal(A,l,n + l - 1)})

	 Ÿ NC(n,A)
	Solution: ctpal º
	(integer u, l; boolean p; l ‹ 1; c ‹ 0;
	it (u ‹ l + n -1;
	(u £ N Æ (palul; (Øp Æ skip | p Æ c ‹ c+1); l ‹ l+1; *)
	| u > N Æ l))
	ti)
	palul º: NC(l,u,A) Ÿ (p’ = pal(A,l,u)
	where
	pal(A,b,c) º ((1 £ b £ c £ N) Ÿ (" i, 0 £ i < Î(c- b +1)¸2˚ ﬁ A[b+i]=A[c-i])))

	Displays: An Explanation
	The top part of each display is the specification for the program in the middle.
	The program in the middle is kept small by removing sections, creating a display for them, and in...
	The bottom part contains a specification of these invoked programs.
	To check a display determine the description of the program in the middle, and see if it satisfie...
	To check a set of displays, make sure that every specification at the bottom of one display is at...
	• standard programs
	• primitive programs

	Completeness can be checked mechanically.

	Software Inspections We Can Trust
	David Lorge Parnas, P.Eng.
	NSERC/Bell Industrial Research Chair in Software Engineering Director of the Software Engineering...
	Software is devilishly hard to inspect. Serious errors can hide for years. Consequently, many are...
	This talk describes a procedure for inspecting software that consistently finds subtle errors in ...
	During the procedure, the inspectors produce and review mathematical documentation. The mathemati...

	Responsibilities of (Software) Engineers
	• To understand the properties of their products thoroughly.
	• To follow established rules of good practice when designing and building products.
	• To apply theory where it has been demonstrated to lead to better, or safer, products.

	Engineering is Not Management
	The art of system management is the ability to get things built without knowing exactly what they...
	The engineer must thoroughly understand the properties of the product.
	Software projects are hard to manage - especially if they are badly designed, but...
	Unless we have good Engineers, the best managers will not be able to successfully manage these pr...
	Inspections have to be carefully managed but executed by Engineers.
	Why is Software so often a Problem?
	Developers consistently underestimate the difficulty of building software for long-term use.
	They write software rather than design it.
	They do not:
	• systematically, identify and record requirements,
	• hold reviews of the requirements document,
	• explicitly design, document and review software structure,
	• carefully inspect all designs and programs.
	These steps are standard practice for all engineering products other than software.
	The steps are not taken for software because,

	Famous last words!

	Why Don’t People Apply Engineering Discipline to Software?
	(1) Some don’t have an engineering education.
	(2) Some don’t think it’s necessary.
	(3) Some don’t know how to do it.
	Why don’t we demand that software people have appropriate qualifications?
	• Experience shows that it is necessary.
	• We license hairdressers, don’t we.

	Why aren’t software designers required to be licensed Engineers?
	• They should understand more than the code.
	• They must be sure their product is fit for use.

	Why Don’t Designers Apply Mathematics, and “Theory” to Software Products?
	The last 30 years have seen great advances in our understanding of software science.
	Programs written by most engineers have not taken advantage of this theory.
	Programs written by most other programmers do not reflect this theory.
	• Many don’t know the theory.
	• Those who know it don’t know how to apply it
	• Much of it is difficult to apply, perhaps even not applicable.
	There is a need to connect theory to practice.
	Let’s start with software inspections.

	When is Software Critical?
	“Critical” is not necessarily “safety critical”
	Other types of critical programs:
	• Mass distributed programs in warranty situations
	• Critical kernels in many systems
	• Financial Systems
	• Security (Privacy, Data Protection) programs
	• any system where a failure may lead to a lawsuit.
	The common property of all of these examples is that the cost of a failure is high.
	If you value your reputation, your work may be critical.

	The Critical-Software Tripod
	(1) Precise, well organised, mathematical documentation with systematic review
	(2) Extensive Testing
	• Systematic Testing-quick discovery of gross errors
	• Random Testing -discovery of shared oversights and reliability assessment

	(3) Qualified People and Approved Processes

	The Three Legs are complementary
	The three legs are all needed.
	The stool falls over if any leg is forgotten.
	The third leg is the shortest.
	It’s the shortest leg that we should worry about.
	Today we discuss only leg (1).
	Why Conventional Reviews are Ineffective
	(1) The reviewers are swamped with information.
	(2) Most reviewers are not familiar with the product design goals.
	(3) There are no clear individual responsibilities.
	(4) Reviewers can avoid potential embarrassment by saying nothing.
	(5) The review is conducted as a large meeting where detailed discussions are difficult.
	(6) Presence of managers silences criticism.
	(7) Presence of uninformed reviewers may turn the review into a tutorial.
	(8) Specialists are asked general questions.
	(9) Generalists are expected to know specifics.
	(10) The review procedure reviews code without respect to structure. (n lines per hour)
	(11) Unstated assumptions are not questioned.

	Effective Reviews are Active Reviews
	A dilemma:
	• Errors in programs and design documents should be found before the documents/systems are used.
	• Errors in programs and documents are usually found when the documents are used.

	Another dilemma:
	• Everyone’s work requires review!
	• It’s easier to say “OK” than to find subtle errors!
	• Reviewer’s approval is not reviewed.

	One more dilemma:
	• No individual can review all aspects of a design.
	• When working in a group, people tend to relax in the knowledge that others are also working the...

	Solutions:
	• Make the reviewers use the documents.
	• Make the reviewers document their analysis.
	• Have specialised reviews. Ask the reviewer about things that they know.
	• Make the reviewers provide specifics - not just a bit.

	Previous Work on Inspections
	Best known approach Fagan - 1976.
	Many followers - new book by Gilb.
	Explicitly focus on the management aspects.
	• Who should be there?
	• What are the roles of the participants?
	• How long is a meeting?
	• How fast do you work?
	• Forms for reporting errors?

	Read the code in sequence and paraphrase.
	Paraphrases are informal.
	Most observers find these more effective than conventional reviews or walk-throughs, but...
	... can we do better?

	Parnas/NRL/AECB/AECL/Ontario Hydro
	Focus on the engineering side.
	Depend on hierarchical decomposition rather than sequential reading.
	Use mathematical notations to provide precise descriptions rather than informal paraphrases.
	Produce useful precise documentation as a side effect.
	Proceed much more quickly if the documentation was produced by the developers.
	Insures that cases and variables are not overlooked.
	Applies simple mathematics to check for completeness aspects.

	Active Review of Design Documents
	Base the review process on the nature of the document.
	(1) Begin by identifying desired properties.
	(2) Prepare questionnaires for the reviewers. Ask them questions that:
	• make them use the document.
	• make them demonstrate that the desired properties are present.
	• ask for sources of information to support the answers to other questions.
	For example:
	• Ask reviewers to identify the domain of the program
	• Ask reviewers to identify “error” cases.
	• Ask reviewers to explain why no other error cases are possible.
	• Ask reviewers to explain why the behaviour required for each case is the desired behaviour.
	For more information read [1].

	Inspecting Programs
	It is the code that “hits the road”.
	Getting the requirements right, the structure right, the interfaces right, the documentation righ...

	The same review principles apply, viz:
	• Make the reviewers use the material they review.
	• Make the reviewers answer questions.
	• Ask the reviewer about things that they know.
	• Make the reviewers provide specifics.
	We compare completed programs with previously reviewed specifications.
	We ask some reviewers to produce precise descriptions.
	We ask other reviewers to show that the descriptions match the specifications.
	It is hard work but it produces results.
	• We get good documentation for future use.
	• We find errors in the best industrial code - programs that were considered correct.

	Our Code Inspection Process
	(1) Prepare a precise specification of what the code should do - a program function table.
	(2) Decompose the program into small parts appropriate for the “display approach” [2].
	(3) Produce the specifications required for the “display approach”.
	(4) Compare the “top level” display description with the requirement specification.
	Observations:
	• You can’t inspect without precise requirements.
	• Step (2) would already have been done if you use the display method for documentation.
	• Step (3) is truly an active design review
	• All reviewer work is itself reviewable.
	• If you did not already have it, the by-product is thorough documentation.
	• It’s a bunch of small steps and very systematic.

	Descriptions vs. Specifications
	An actual description is a statement of some actual attributes of a product, or set of products.
	A specification is a statement of all properties required of a product, or a set of products.
	In the sequel, “description”, without modifier, means “actual description”.
	The following are implications of these definitions:
	• A description may include attributes that are not required.
	• A specification may include attributes that a (faulty) product does not possess.
	• The statement that a product satisfies a given specification may constitute a description.
	The third fact results in much confusion. A useful distinction has been lost.

	Descriptions vs. Specifications
	Any list of attributes may be interpreted as either a description or a specification.
	Example:
	“A volume of more than 1 cubic meter”
	This could be either an observation about a specific box or, a statement of the requirements for ...
	A specification may offer a choice of attributes; a description describes the actual attributes, ...
	Sometimes one may use one’s knowledge of the world to guess whether a statement is a description ...
	Example:

	“Milk, badly spoiled”
	Guessing is not reliable. We need to explicitly label specifications and descriptions so that the...

	Do We Need New Semantics Theories For Programming?
	Not for the practical software engineering problems that I see.
	I can find 30 year old theory that works for the problems that I will describe today.
	Semantic theory has failed to describe real languages, but (in my opinion) the fault lies with th...
	We do need improvements in:
	• the notation used to describe actual programs.
	• the ability to describe behaviour in terms of the values of observable variables - nothing else.
	• convenient ways to deal with all aspects of termination including non- deterministic non-termin...

	What follows is mathematically equivalent to some very old ideas, but has some practical advantages.

	A Mathematical Interlude - LD-relations.
	A binary relation R on a given set U is a set of ordered pairs with both elements from U, i.e. R ...
	The set U is called the Universe of R.
	The set of pairs R can be described by its characteristic predicate, R(p,q), i.e. R = {(p,q): U ¥...
	The domain of R is denoted Dom(R) and is {p | $q [R(p,q)]}.
	The range of R is denoted Range(R) and is {q | $p [R(p,q)]}.
	Below, “relation” means “binary relation”.
	A limited-domain relation (LD-relation) on a set, U, is a pair, L = (RL, CL) where: RL, the relat...

	Using LD-Relations as Before/After Behavioural Descriptions (1)
	Let P be a program, let S be a set of states, and let LP = (RP, CP) be an LD- relation on S such ...
	By convention, if CP is not given, it is, (by default), Dom(RP).
	With this convention, our approach is upwards compatible with the “cleanroom” approach for dealin...

	Using LD-Relations as Before/After Behavioural Descriptions (2)
	The following follow from the definitions:
	• If P starts in x and x Œ CP, P always terminates; if (x, y) Œ RP, P may terminate in y.
	• If P starts in x, and x Œ (Dom(RP) - CP), the termination of P is non- deterministic; in this c...
	• If P starts in x, and x œ Dom(RP), then P will never terminate.
	By these conventions we are able to provide complete before/after descriptions of any program but...

	Specifying Programs (1)
	Specifications may allow behaviour not actually exhibited by a satisfactory program.
	We can also use LD-relations as before/after specifications. To understand the meaning of a speci...
	Let Lp = (RP, CP) be the description of program P. Let S, called a specification, be a set of LD-...

	Specifying Programs (2)
	The following follow from the definitions:
	• A program will satisfy it’s own description as well as infinitely many other LD-relations.
	• An acceptable program must not terminate when started in states outside Dom(RS).
	• An acceptable program must terminate when started in states in CS (CS Õ Dom(RP)).
	• An acceptable program may only terminate in states that are in Range(RS).
	• A deterministic program can satisfy a specification that would also be satisfied by a non- dete...

	Note the following differences between the description and the specification of a program.
	• There is only one LD-relation describing a program, but that program will satisfy many distinct...
	• An acceptable program need not exhibit all of the behaviours allowed by RS (RP Õ RS).
	• An acceptable program may be certain to terminate in states outside CS. (CS Õ CP).

	The intended use of each LD-relation (specification or description) must be stated explicitly!

	Tabular Descriptions and Specifications
	Specification for a search program
	($ i, B[i] =x)
	(" i, ((1 £ i £ N) ﬁ B[i] ¹ x))
	j’ |
	B[j’] = x
	true
	present’=
	true
	false
	Ÿ NC(x, B)
	Description of a search program

	($ i, B[i] =x)
	(" i, ((1 £ i £ N) ﬁ B[i] ¹ x))
	j’ |
	(B[j’] = x) Ÿ (" i, ((j’ < i £ N) ﬁ B[i] ¹ x))
	true
	present’=
	true
	false
	Ÿ NC(x, B)
	The above is one of many kinds of tables!
	Simple tables like this understate the advantage.
	These have proven “practitioner appeal”

	Readers and Writers
	Formal methods discussions emphasise program development.
	A successful program will have more readers than writers, because it will be maintained for many ...
	The needs of reviewers and maintainers, are as important as the needs of program designers.
	Programs should be presented in a way suitable for review and maintenance.
	Proper decomposition into modules will reduce the complexity and length of programs.
	But, some may still be quite long.
	We present a documentation method for non-trivial, long, well-structured programs.
	Large software systems cannot be built by a single person.
	The task of constructing them must be split into several smaller work assignments.
	Each assignments is to design and implement a group of programs, which we call a module.
	Programs in a module share access to a “private” data structure.
	The internal data structure of a module cannot be read and written from other modules.
	We must describe the meaning of the data structure.
	We must describe the effect of each program on that data structure.

	The limits of human comprehension
	Human beings cannot easily understand long programs.
	Studying a long program, we mentally decompose it.
	We provisionally, assign a function to each part.
	We try to convince ourselves that, if each part implements its assigned function, the whole progr...
	We then try to confirm our starting hypothesis, anditerate until exhausted!
	Reviewer should not have to guess a program’s structure.
	Program should be presented as a collection of small parts.
	Function of each part should be precisely stated.
	It should be possible to review those small parts separately.
	Reviewer’s responsibility is checking small fragments.

	Documentation Principles
	An observation by Ludwig Wittgenstein:
	• “Anything that can be said at all, can be said clearly. Anything that you cannot talk about, yo...

	What do we need in software documentation.
	(2) Accuracy: not “almost right”.
	(3) Consistency: no contradictions, hence no duplication.
	(4) Completeness: All visible behaviour covered, even when there is a choice.
	(5) Verifiability: Organised for easy checking, a place for everything.
	(6) Changeability, design for retrieval, no searching. No fuzzy “motherhood” statements!
	(7) Scalability: Size of document does not increase with size of program.

	The concept of displays
	Designers to present a program as a set of displays.
	Well-structured program: short text invoking other programs.
	All programs can be short;
	A display presents a program so that its correctness can be examined in isolation from other disp...
	A display consists of three parts:
	(1) A description of what the program should do.
	(2) the program itself.
	(3) descriptions of subprograms invoked by this program.
	A set of displays will be considered complete if, for each description of a non- standard subprog...
	Completeness, in this sense, can easily be checked mechanically.
	Verification of the correctness of a set of displays is reduced to a set of smaller tasks

	Why use The Functional Approach
	The display method is independent of the specification technique.
	The display method is independent of programming language.
	It works best with the functional approach.
	[e.g. H.D. Mills, N.G. de Bruijn, Majster-Cederbaum,].
	Functional Approaches “scale up” because there are no special primitive programs.
	It can be applied even if the names represent huge programs.

	Isn’t Stepwise refinement enough?
	Stepwise refinement leads to long programs [Wirth example].
	Stepwise refinement leads to repetitive programs.
	Displays with functional specifications avoid these pitfalls.
	NEVER write a long program!

	Hierarchical control structure in programs
	Program: text describing sequence of state transitions in a computer.
	“Structured Programming” constructs have three very useful properties:
	(1) programs constructed using them can be decomposed into a hierarchy of parts (with lower level...
	(2) the semantics of the total program can be determined from the semantics of its parts, using s...
	(3) semantics can be determined in a simple order: inner parts first.
	The above properties make it easier to study a long structured program can be understood.
	The Display Method is intended to be used for programs that have these properties.

	Use of data abstractions
	The best structured program will be difficult to explain and understand if it is presented in ter...
	Data structures should be hidden by the introduction of abstract data types
	Precise program documentation is not possible unless the abstract data type interfaces are precis...
	Our examples have been selected so that they can be understood without an understanding of module...

	A simple Pseudo Code
	Variables that are not declared are assumed globally declared.
	B Æ P (guarded program) P will be executed only if B is true. Guarded programs appear only in gua...
	(A | B|) (guarded program list) A, B, ... must be guarded programs. One of executable alte...
	A;B (execute B after A)
	* (go): Program used to control iteration.
	l (stop): Program used to control iteration.
	it P ti (iterated program)
	Execute P at least once and continue executing it as long as “*” (go) is executed by P. If P exec...
	Programs Used in This Example
	Îx˚ = the largest integer less than x.
	card(s) = the cardinality of set s.
	skip = program that does nothing (No Operation) is used as a place holder.
	‹ = assignment operation
	Examples
	Î3.6˚ = 3
	Î-2.5˚ = - 3
	card({2,4,6,8}) = 4
	((a³0 Æ a) Æ a ‹ a+1 | (a£0 Æ a) Æ a ‹ a-1)
	n ‹ 1;
	it (n £ N Æ (n ‹ n +1;*) | n > N Æ l) ti

	Number 1 of three programs. Which one is right?
	Problem:
	NC(A) Ÿ (" q, (1 £q £ N ﬁ H’[q] = card({l |("i,0£i<Îq¸2˚ﬁA[l+i]=A[l+q-1-i])}))
	(integer array H[1:N];
	(integer c; integer n; n ‹ 1;
	it (n £ N Æ
	((integer u; integer l; boolean p; l ‹ 1; c ‹ 0;
	it (u ‹ l + n -1;
	(u £ N Æ ((integer i; i ‹ 0; p ‹ true;
	it (i < Î(u - l +1)¸2˚ Æ
	(A[l+i] = A[u-i] Æ (i ‹ i + 1;*)
	| A[l+i] ¹ A[u-i] Æ (p ‹ false; l))
	| Î(u - l +1)¸2˚ £ i Æ l)
	ti) ;
	(Øp Æ skip | p Æ c ‹ c+1); l ‹ l+1; *)
	| u > N Æl))
	ti);
	n ‹ n +1; H[n] ‹ c; *)
	| n > N Æ l)
	ti))
	Number 2 of three programs. Which one is right?
	Problem:
	NC(A) Ÿ (" q, (1 £q £ N ﬁ H’[q] = card({l |("i,0£i<Îq¸2˚ﬁA[l+i]=A[l+q-1-i])}))
	(integer array H[1:N];
	(integer c; integer n; n ‹ 1;
	it (n £ N Æ
	((integer u; integer l; boolean p; l ‹ 1; c ‹ 0;
	it (u ‹ l + n -1;
	(u £ N Æ ((integer i; i ‹ 0; p ‹ true;
	it (i < Î(u - l +1)¸2˚ Æ
	(A[l+i] = A[u-i] Æ (i ‹ i + 1;*)
	| A[l+i] ¹ A[u-i] Æ (p ‹ false; l))
	| Î(u - l +1)¸2˚ £ iÆl)
	ti) ;
	(Øp Æ skip | p Æ c ‹ c+1); l ‹ l+1; *)
	| u > N Æ l))
	ti);
	H[n] ‹ c; n ‹ n +1;*)
	| n > N Æ l)
	ti))

	Number 3 of three programs. Which one is right?
	Problem:
	NC(A) Ÿ (" q, (1 £q £ N ﬁ H’[q] = card({l |("i,0£i<Îq¸2˚ﬁA[l+i]=A[l+q-1-i])}))
	(integer array H[1:N];
	(integer c; integer n; n ‹ 0;
	it (n £ N Æ
	((integer u; integer l; boolean p; l ‹ 1; c ‹ 0;
	it (u ‹ l + n -1;
	(u £ N Æ ((integer i; i ‹ 0; p ‹ true;
	it (i < Î(u - l +1)¸2˚ Æ
	(A[l+i] = A[u-i] Æ (i ‹ i + 1;*)
	| A[l+i] ¹ A[u-i] Æ (p ‹ false; l))
	| Î(u - l +1)¸2˚ £ iÆl)
	ti) ;
	(Øp Æ skip | p Æ c ‹ c+1); l ‹ l+1; *)
	| u > N Æ l))
	ti);
	H[n] ‹ c; n ‹ n +1;*)
	| n > N Æ l)
	ti))

	Palindrome from u to l
	Note: p is declared globally as a boolean
	Problem: palul º: NC(l,u,A) Ÿ (p’ = pal(A,l,u)
	Solution: palul º
	(integer i; i ‹ 0; p ‹ true;
	it (i < Î(u - l +1)¸2˚ Æ
	(A[l+i] = A[u-i] Æ (i ‹ i + 1;*)
	|A[l+i] ¹ A[u-i] Æ (p ‹ false; l))
	| Î(u - l +1)¸2˚ £ i Æ l)
	ti)
	auxilliary function:
	pal(A,b,c) = ((1 £ b £ c £ N) Ÿ (" i, 0 £ i < Î(c- b +1)¸2˚ ﬁ A[b+i]=A[c-i])))
	Counting Palindromes in A[1:N] (N > 1)
	Problem: ctpal º
	card({l | pal(A,l,n + l - 1) })

	 Ÿ NC(n,A)
	Solution: ctpal º
	(integer u, l; boolean p;l ‹ 1; c ‹ 0;
	it (u ‹ l + n -1;
	(u £ N Æ (palul;(Øp Æ skip | p Æ c ‹ c+1); l ‹ l+1; *)
	| u > N Æ l))
	ti)

	Producing a Palindrome Histogram
	Problem: palhist º
	NC(A) Ÿ (" q, (1 £q £ N ﬁ H’[q] = card({l | pal(A, l, n + q - 1)}))
	Solution: palhist º (integer c, n; n ‹ 1;
	it (n £ N Æ (ctpal; H[n] ‹ c; n ‹ n +1;*)
	| n > N Æ l)
	ti)
	ctpal º
	card({l | pal(A,l,n + l - 1) })

	 Ÿ NC(n,A)

	Can we Document Real Programs This Way
	Yes,
	• Ontario Hydro/AECL/AECB did it.
	• Key components of our tool system were documented in this way?
	• We have done some parts of commercial systems.
	• Small components are done in my industrial courses.

	But,
	• It will cost “up front time”, may save time and cost later.

	Tabular Description of Sample Code
	Table 1
	Table 2
	Table 3
	Table 4

	Structure and Inspection
	Well-structured programs are easier to decompose. They can be decomposed by purely syntactic means.
	Well-structured programs are much easier to inspect.
	Inspection encourages good structuring.
	Inspection suggests structural improvements.
	Inspected programs are easier to maintain.
	Modified programs need not be completely re-inspected. The parts that must be inspected again can...
	The cost of future maintenance is greatly reduced.
	The definition of “well-structured” should not be based on the absence or presence of certain con...

	Our Initial Experience: Darlington Nuclear Power Generating Station
	Three control systems in Canadian reactors:
	• one normal control system
	• two independent shutdown systems
	Safety analysis assumes control system will fail. Only shutdown systems are considered safety-cri...
	Previous shutdown systems were analogue and relay systems.
	At Darlington they are software controlled.
	Each Software System has a simple task.
	Their designs are “diverse”.
	The systems are more complex than their predecessors with the result that AECB could not be confi...

	How can we increase that level of confidence?

	Why We Could Not Use English
	The following type of sentence was found in the requirements document.
	What does this simple sentence mean?

	Three Reasonable Interpretations:
	A Fourth (Unreasonable) Interpretation:
	This is the most literal interpretation!
	It is a disaster waiting to happen!
	• If you use natural languages, there are thousands of such phrases waiting to “bug” you.

	The Inspection Process at Darlington

	Four teams:
	(1) Application Experts
	(2) Programming Experts
	(3) Verifiers
	(4) Auditors

	Roles of the teams:
	(1) Produces requirements tables.
	(2) Produce Program Function Tables (Displays).
	(3) Show (1) = (2) and that (2) are correct.
	(4) Audit the “proofs”.
	Subsequent Experience
	In classes on this method, we have applied this to numerous small industrial programs that were b...
	In most cases, we found unexpected errors.
	In some cases, the participants could not state the requirements.
	In other cases, the program could not be decomposed (machine code w/o documentation).
	I believe that one program was correct.
	In all cases, we could improve the program.
	We have found errors in textbook programs, library programs, and well- used and tested programs.
	No process is perfect, but this one engenders confidence. It produces code that people trust.

	What Makes Things Hard?
	Variables with no names.
	Variables with long names or characterising expressions.
	Quantification over indices rather than elements.
	Programs that are not understood.
	Programs that are badly modularised.
	Self-referencing data structures
	These can all be fixed!

	Essential Point: Divide and Conquer
	The initial decomposition is essential. Attempts to simply scrutinise the program fail.
	Trying to read the program the way a computer would is much less effective. Logically connected p...
	The use of tables is essential. It breaks things down into simple cases so that
	• We can be sure that all cases are covered.
	• Each case is straightforward
	We consider all variables, but one at a time.
	We consider all cases, one at a time.
	We can take “breaks”, go home and sleep, even take holidays, without losing our place.
	Using displays and tabular summaries is far more work than Fagan’s English paraphrasing, but it i...

	The Other Essential Point: Precise, Abstract Descriptions
	Having lots of little parts is not enough.
	We have to be sure that the parts fit together.
	We have to be able to do that without page-flipping.
	Each part’s behaviour must be precisely summarised without giving intermediate states.
	We must be sure that the description at the bottom of one display will be identical with that at ...
	These global checks can, and have been, mechanised.
	• Precise descriptions are painstaking work, but if quality is important, they are essential.

	It’s not always easy!
	The most critical step, besides decomposition, is finding a good representation for the state space.
	It is not always worthwhile.
	There are informal variations.
	It is a capability that your organisation should have.

	Some Basic Definitions
	• A sequence of state changes described by P is called an execution of P.
	• The set of executions of P that begin with the state x Œ U is denoted by eP(x), and x is called...
	If there exists an execution in eP(x) that is finite and its last state is z, then:
	• we write <x,…, z> Œ eP(x),
	• we say that this execution terminates (in z) and call z the final state (of this execution).
	• If <x,…, z> Œ eP(x), then we also say that the program P may start in x and terminate in z.
	• If eP(x) contains an infinite sequence, then we say that this is a non-terminating execution, d...
	• If there exists x Œ U such that eP(x) contains two or more distinct executions, then P is a non...
	• If for a given x Œ U every member of eP(x) terminates, then x is called a safe state for P. The...

	Description of programs
	Let P be a program, U be the set of states of its data structure,
	Let LP = (RP , CP) be an LD-relation on U such, that:
	• (x, y) Œ RP ¤ <x,…, y> Œ Exec(P, U),
	• CP = SP .

	Lp is called the LD-relation of P. It describes P.
	If CP = Dom(RP), then (by convention) the competence set need not be given explicitly.
	Note:
	• if P starts in x, and x Œ CP , then P always terminates; if (x,y) Œ RP , then P may terminate i...
	• if P starts in x, and x Œ (Dom(RP) - CP), then the termination of P is non- deterministic; if (...

	if P starts in x, and x œ Dom(RP), then P does not terminate.

	Specification of programs
	LD-relations can be used to specify a program.
	One may be asked to write a program that satisfies at least one of a set of LD- relations.
	Let Lp = (RP , CP) be the LD-relation of P.
	Let S, called a specification, be a set of LD-relations on U, and let LS = (RS, CS) be an element...
	• P satisfies the LD-relation LS, if CS Õ CP and RP Õ RS,
	• P satisfies the specification S, if P satisfies at least one element of S.

	It is often the case that the set S consists of exactly one element. If S = {LS}, then we may say...

	Displays
	A display is a document that consists of the following three parts:
	• P1: a specification for the program presented in this display,
	• P2: the program itself, in which names of other programs may appear; we will call these named p...
	• P3: specifications of all non-standard subprograms invoked in P2.

	A standard subprogram is the one that does not require a specification.
	If an invoked subprogram is not standard, its specification appears as P1 in another display.
	A name in P2 may represent either a procedure call or a macro.
	To avoid repetition of information on more than one display, we write it in a lexicon.

	Completeness and Correctness
	A display is said to be correct if program P2 satisfies specification P1 whenever the subprograms...
	A set of displays (for a given program) is complete, if for each specification of a non-standard ...
	A program (presented as a set of displays) is correct if this set of displays is complete and eac...

	Conventions
	If R is a relation, then:
	• “R” denotes the set of ordered pairs that constitutes this relation,
	• “R(x,y)” denotes the characteristic predicate of the set R.

	Let P be described by an LD-relation L = (R, C).
	Let and let v1, ..., vk be program variables in P which form its data structure, v = (v1, ..., vk...
	• “ ‘vi” (to be read “vi before”) denotes the value of the programming variable vi before an exec...
	• “ vi’ ” (to be read “vi after”) denotes the value of the variable vi after a terminating execut...

	Each pair in R will be of the form (‘v, v’).
	We often write “R(,)” as an abbreviation of R((‘a,‘b,‘c, ...), (a’,b’,c’, ...)).
	NC(v1, …, vk) ¤ (v1’ = ‘v1) Ÿ … Ÿ (vk’ = ‘vk)

	Parameters and side-effects
	The specification of the procedure invocation will be written in terms of actual parameters.
	In the declaration of this procedure formal parameters will be used.
	Both, the specifications of subprograms appearing in the declaration, and statements in the decla...
	For sake of simplicity we will forbid any form of aliasing, e.g.:
	• If more than one parameter is called by variable, then the actual parameters must be different ...

	If there are side-effects, then a variable external to the procedure body may not be passed as a ...
	A. Pascal external definitions and declarations

	The Problem of the Dutch national flag
	There is a data type color {blue,red,white}
	There is an abstract data type “buckets”.
	Variables of this type may be used as a vector of N “pebbles” of “color” type, where N ³ 0 is an ...
	The only operations on v are: PUT(i,c), LOOK(i), SWAP(i,j)
	Design a procedure to rearrange (if necessary) the pebbles in the order of the Dutch national fla...
	1 £ k < r: the kth bucket is in zone ER (number of buckets r-1 ³ 0)
	r £ k £ w: the kth bucket is in zone X (number of buckets w-r+1 ³ 0)
	w < k £ b: the kth bucket is in zone EW (number of buckets b-w ³ 0)
	b < k £ N: the kth bucket is in zone EB (number of buckets N-b ³ 0)
	This can be illustrated by the following figure:

	Initially, r=1, and w=b=N, so that the zones ER, EW, and EB are empty. The program then proceeds ...
	Display to be continued
	A. Auxiliary functions
	(card({i | (1 £ i £ N) Ÿ (v1i = red)}) = card({i| (1 £ i £ N) Ÿ (v2i = red)})) Ÿ
	(card({i | (1 £ i £ N) Ÿ (v1i = white)}) = card({i | (1 £ i £ N) Ÿ (v2i = white)})) Ÿ
	(card({i | (1 £ i £ N) Ÿ (v1i = blue)}) = card({i | (1 £ i £ N) Ÿ (v2i = blue)}))
	B. Pascal external definitions and declarations

	C. vector(n,elem) Module Interface Specification
	Ø(1 £ i £ n)
	1 £ i £ n
	Conclusions
	Programs must be understood in small chunks
	Programs should be presented in small chunks
	NEVER read (or write) a long program.
	Precise specifications/descriptions are essential
	Size of specification not based on program size.
	Without precise descriptions of program structure, even great programmers will err.
	Correctness can be checked “by head”
	Completeness, consistency, can be checked by machine.
	Tools advantageous in daily use.

	Review: What must you do
	(1) Begin with a specification of what you want the critical program to do.
	(2) Decompose the program:
	• Introduce modules/data abstractions/objects wherever possible and provide abstract specificatio...
	• Use hierarchical decomposition as demonstrated earlier.

	(3) Produce a set of displays based on the decomposition.
	(4) Make sure that the displays are complete and consistent
	• Every specification at the bottom of a page must appear at the top of another.
	• There can be only one implementation display for each program.

	(5) Verify/Inspect each display. Use tabular structure to decompose the inspection process.
	(6) When errors in specifications are found, mark all displays that include those specifications ...

	Some Suggested Reading
	(1) Parnas, D. L., Weiss, D. M., “Active Design Reviews: Principles and Practices”, Proceedings o...
	(2) Parnas, D. L., Madey, J., Iglewski, M., “Precise Documentation of Well-Structured Programs”, ...
	(3) Parnas, D. L. “Inspection of Safety Critical Software using Function Tables”, Proceedings of ...
	(4) Parnas, D. L., Asmis, G.J.K., Madey, J., “Assessment of Safety-Critical Software in Nuclear P...

