Project about UML Use Cases and Logic

Grant Holder: Stefan Gruner, Pretoria

Achievement Report: September 2009
Part IV: Reasoning Engine
The Reasoning Engine –still under development– behind the GUI of our CASE tool prototype must have a textual representation of the Actors, Use Cases and relationships between them. For this purpose, Use Case diagram are divided into their components: objects, concepts and roles. In terms of description logics,
 actors are represented as objects, Use Cases as concepts and the relationships as roles. Relationships are not only the classic UML Use Case relationships such as inheritance or extension, but also all other inter-Use-Case relationships as they are defined in the extended meta model. Those entities, when textually represented, can then serve as the fact base on which rule-based reasoning can then be carried out. It is ongoing work in this project to discover all valid consistency rules which must hold for any extended Use Case specification built from the elements of our meta model.
For technical convenience, PROLOG was chosen for the implementation of the reasoning engine. This is because there exist convenient interfaces between PROLOG and JAVA in which the GUI of our CASE tool prototype is implemented. The facts representing a Use Case specification will thus have to be translated into PROLOG facts, whereas the consistency rules –still to be discovered– which must hold for the semantic elements of the meta model will have to be encoded as PROLOG rules. The translation from a graphical Use Case specification (in the GUI) to its corresponding set of PROLOG facts (for the reasoning engine) will use an intermediate XML-based representation of the Use Case graph. XML representations of graphs are nowadays widely available and can be regarded as de-facto-standards. This shall not only make it easier for the prospective users of our open-source prototype to modifiy it according to their own needs; it also de-couples the reasoning engine from the technical particularities of the GUI, according to the well-known principles of software architecture design; see Figure 1.
[image: image1.png]
Figure 1. Structure of our CASE tool prototype

Simple Example
A simple example of a semantic consistency rule to a Use Case specification is the law of inheritance which indicates that an action performed by an actor “A” may also be performed by an actor “B” if there is a generalization relationship (A,B). This is shown in Figure 2.
	Law
	Expression

	1
	can_execute (A,U) :– actor (A),

 usecase (U),

 arrow (A,U).

	2
	can_execute (B,U) :– generalization (A,B),

 actor (A),

 actor (B),

 usecase (U),

 canexecute (A,U).

Figure 2. Prolog Law set for Actor Inheritance

If these laws are applied to the situation shown in the Use Case specification of Figure 2, it can be deduced by the reasoning engine that actor “Jack” must also be able to invoke the use-case “Fix_something”, since the bold arrow between the two actors represents a semantic “is”-relation (a.k.a. subsumption).
[image: image2.png]
Figure 3. Generalization of Actors
� � HYPERLINK "http://www.fraber.de/sitec/dl.html" ��http://www.fraber.de/sitec/dl.html�

PAGE
- 1 -

