Project about UML Use Cases and Logic

Grant Holder: Stefan Gruner, Pretoria

Achievement Report: September 2009
Part III: Instruction Sheet for the CASE Tool Prototype
For the sake of easy deployment of the CASE tool prototype as .jar file was created; simply run it by double-clicking on the file titled “Cute.jar”. Note that a minimum requirement of running the program is that you have at least the Java Runtime version 1.5.0 installed, and that the accompanying “lib” folder is in the same folder as Cute.jar.

Upon opening the program, you are greeted by a generic screen for UML development in ArgoUML. To start drawing a Use Case Diagram (which you can then augment with further logic descriptions), click on the little “stick-man” on the toolbar, which is circled in red in Figure 1 below.
[image: image1.png]
Figure 1. Button to create Use Case diagrams in the prototype
Once you have clicked on the Use Case button, you are able to start building your Use Cases. In Figure 2 you can see all the options available to the designed when building Use Case diagrams. The functions are labeled from number 1 to number 9 –see Figure 2– and are further explained below.
[image: image2.png]
Figure 2. A simple diagram with a Query
1) Actor button: Inserts an Actor into the diagram

2) Use Case button: Inserts a Use Case into the diagram

3) Association button: Inserts an Association into the diagram between two entities.

4) Dependency button: Inserts a Dependency into the diagram between two entities.

5) Generalization button: Inserts a Generalization into the diagram between two Actors.

6) Extend button: Inserts an Extension into the diagram between two Use Cases.
7) Include button: Inserts an Inclusion into the diagram between two Use Cases.
8) Inserts a logical fact or query into the diagram.

9) Placeholder for possible additional logical relation (not yet implemented).

Note to point 8: the difference between a fact and a query is denoted by the prefix “Question:” or “Fact:” to the block that denotes the statement (which is the blue block in the Figure 2).
Simple Example
Figure 2 shows a simple Use Case diagram in the prototype. When this program is run, all the “normal” UML is converted to a list of facts. Once all the facts are generated for each item in the diagram, it will be combined with the rule base which drives the reasoning engine; (note that our rule base is currently still incomplete and also the reasoning engine is not yet completely implemented). The query (blue box) is then evaluated and the result from this query is “true”. This is because
· Jack is a generalization of Alexander.

· Alexander can initiate the process Fix_something.

· Therefore Jack can initialize Fix_something as well as Break_something.

The Query (shown by the blue box) is about whether Jack can execute Fix_something. And by the above reasoning, Jack can execute Fix_something even though there is no association between Jack and Fix_something, as Jack is a Generalization of Alexander. To understand how this result is calculated in PROLOG, see page “Reasoning Engine” in Part IV of this document.

■
Currently, our prototype can only check for a simple generalization and as such, only the can_execute(A,U) query is currently supported, where A is an Actor and U is a Use Case. When more rules are developed (other than generalization) they will be added and queries and facts can be used on the basis those other features of the meta model, too.
PAGE
- 1 -

