Project about UML Use Cases and Logic

Grant Holder: Stefan Gruner, Pretoria

Achievement Report: September 2009

Part V: Customisation of the Prototype
To modify the source code of our prototype the Java Development Kit (version 5 or higher) is needed, as well as a Development Environment or editor to edit the Java source files. Netbeans is recommended as a Development Environment, as the code was developed in Netbeans and does not need re-configuration to be opened up in Netbeans.

Module Structure of the Prototype
As mentioned in one of the previous documents of this development documentation, our prototype is implemented on the basis of ArgoUML 0.25, plus a connection to BProlog. This is a Prolog implementation with a Java interface. It was chosen such that ArgoUML, also programmed in Java, can be easily connected to the Prolog-based reasoning engine, as depicted in the architecture diagram of Figure 1.
[image: image1.png]
Figure 1. Modules of our Prototype.
These three main modules of our prototype, shown in Figure 1, are explained as follows:
· The user interface is the already mentioned ArgoUML with additions for adding logic specifications (on the basis of the extended meta model) to the Use Case diagrams.
· The Java interface allows ArgoUML to call operations from BProlog and return their results back to ArgoUML. It also converts the graphical diagrams into textual statements which can then be reasoned on. Thereby the Java interface takes objects from ArgoUML and converts them into a list of facts. Then it takes the additional logic statements injected into the diagram and converts these to facts as well. The Java interface also generates a file titled “logic.plc” which will later contain all the rules that shall be used for reasoning (once the ongoing implementation project is finished). The file “logic.plc” thus provides the input for the reasoning engine, and the results of reasoning will be returned to the user interface via the Java interface.
· The reasoning engine requires the installation of BProlog which is freely available for academic use at http://www.probp.com/ . For commercial use, however, a license for BProlog must be purchased from its vendors.
Programming
The core functionality of our protytype is programmed almost entirely within its Java interface. Thus only small modifications needs to be made to ArgoUML’s source code, in 14 files, to connect that Java interface to ArgoUML. After this modification is made, then, when you click on the “logic” button which is added on to the GUI of ArgoUML, the Java interface module is activated. 13 code files currently implement the Java interface module.

The source code of our prototype is broadly divided into two sections. One is called “cute” and the other one is called “org”. Thereby, “cute” contains the program code that was added to ArgoUML to implement the link to Prolog. The “org” folder contains the source code for ArgoUML in a slightly modified state which allows for the addition of the “cute” code. Also note that all additional code should be put into the “cute” folder to ensure that the code is easy to modify for future developers. Figure 2 shows a screenshot of the directory structure with the “cute” and “org” folders circled in red.
[image: image2.jpg]
Figure 2. Directory Structure with the Source Code Files of our Prototype
Figure 3 below shows the directory structure of the source code for the project. Note that many entities have a type extension “.svn”. This is automatically created in support of a sub-version repository which allows us to do versioning and to backtrack to earlier versions of the software configuration, if needed.

[image: image3.png]
Figure 3. Source Files of the Prototype
The source code files are found in several folders. The trunk folder contains the main parts of the project implementation. Inside the trunk folder there are numerous sub folders. The most important of them is src which contains the source code for ArgoUML. The other folders on this level contain libraries and documentation for ArgoUML.

In src there are several further sub folders. These all contain the source code that is needed for ArgoUML to function correctly. There you can also find the cute folder and the org folder. The org folder contains the source code for the base ArgoUML system with slight modifications such that ArgoUML can call the code from cute folder. The cute folder contains all the code which needs to be modified if you want to to create our extensions of the prototype.
Extension of the Prototype
The cute folder mentioned above contains 14 files which are of highest importance to the programmer who wants to continue the development of our prototype. These files, also shown in Figure 3 above, are listed in alphabetical order and explained below:
ActionAddFact.java
This module allows for the creation of a fact-“bubble” in the GUI. Such a fact-“bubble” is, in terms of ArgoUML, just a specialized “Note” which can be linked to 1 or n use cases.
ActionAddQuestion.java

This module allows for the creation of a query “bubble” in the GUI. Such a quesry-“bubble” is also a specialized ArgoUML “Note”, which can be linked to 1 or n use cases.
ActionRunLogic.java
This module creates the list of rules, facts and queries and sends it to the Prolog engine for processing. It will also get the reasoning results back from the reasoning engine and display them on the viewer.
CommentBodyFact.java

This module creates comments to be added to facts for additional information.
CrLogic.java

This module allows any problems to be displayed in ArgoUML as a “critique”.
FigFact.java

This module implements a fact figure to be an object on its own in ArgoUML. It uses the default “Comment” dialogue box and extends on it to create a “Fact” dialogue box (appearing in blue colour, instead of the standard black).
FigQuestion.java

This module allows the Question figure to be an object on its own in ArgoUML. It uses the default “Comment” dialogue box and extends on it to create “Question” dialogue box (appearing in yellow colour, instead of the standard black).
GuiProvider.java
This module dds additional functionality to the GUI, such that the Facts and Queries have additional options instead of the default options that are available to “Comments”.
LogicModel.java

This module adds information to the model, such that facts and queries can be easily identified when they are extracted from the diagram. It ensures that the facts and queries have unique formats which are easy to extract (as an array).
LogicViewer.java

This module is the code for the form that shows all the actors, use cases and relations in the form in which it is sent to Prolog. It is a simple text box which is read-only and is displayed as a pop-up window.
plc.jar
This component contains the Prolog implementation which ArgoUML uses to process the logic-encoded Use-Case specifications.
plc.jar.txt

This file contains inconsistency-reports encountered by the BProlog reasoning engine during its most recent run.
PropPanelFact.java

This module contains actions for the fact-object. This is such that the information about the fact can be extracted and used in java (e.g. finding the participants that use the fact, checking that the fact is valid, etc.)
PropPanelQuestion.java

This module ontains actions for the question-object. This is such that the information about the question can be extracted and used in java (e.g. finding the participants that relate to the query, etc.)
By extending any of these files, program code provided by a tool developer is propagated into ArgoUML and run natively there. As the code currently stands, it allows for the addition of logical rules and for reasoning with these rules based on the facts which can be extracted from an augmented Use Case diagram. The code above is all that is needed to transform an augmented Use Case diagram into facts, rules (found as hard-coded in the logic model) and queries (used to query the diagram) which can then be processed in Prolog.
Our development of the prototype continues, and the next progress report is scheduled for the 4th quarter of the year 2010. By then, all consistency rules on the basis of the extended Use Case meta model should have been discovered and coded into the reasoning engine.
PAGE
- 1 -

