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Introduction Goals & Challenges UNIVERSITY OF TWENTE.

Realization of Embedded Control System (ECS) software
For mechatronics & robotic applications
Design Methodology

Model-driven ECS software design
Models of Controllers and Robot Behavior

Dependable software
All code generated!

Supporting tool chain
Clear work flow -> separation of design steps

ECS design challenges
Heterogeneous nature
Large design space
Special demands on the software
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Introduction Approach UNIVERSITY OF TWENTE.

Essential Properties Embedded Control Software
Purpose: control physical systems
Dynamic behavior of the physical system essential for SW
Dependability: Safety, Reliability; Real time
Challenge: Heterogeneity
Layered structure, building blocks, reuse
Multiple modeling formalisms / models of computation
Challenge: Large design space
Clear design flow, Focus per design step
Challenge: Demands on Software
Real-time constraints with low latency
Early-phase testing via (co)-simulation
Support in method
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Introduction Embedded Control System UNIVERSITY OF TWENTE.

Essential Properties Embedded Control Software
Purpose: control physical systems
Dynamic behaviour of the physical system essential for SW
Dependability: Safety, Reliability

Embedded Control System (ECS) software

Embedded software I/O hardware Physical System
Non Soft Hard
real-time, real-time real-time
P —» D/A > Power » Actuators
Q — | o [ amplifier
& | 2% S| Ol o |©
t 132 0log [E] F|Z
2 GEJ% 8 0= |8 > °§5)_ Physical system
= 1262|3382 |w® —
O 5, 0 © | ©
@ |@p - = |9 S|v |s | AD|e Fllter!ng/ < Sensors
=2 Scaling
|

Real-time constraints with low-latency requirement

Combination of time-triggered & event driven parts
Multiple Models of Computation (MoC)
Multiple Modeling formalisms
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Method Starting Points UNIVERSITY OF TWENTE.

Design Methodology
Model-driven ECS software design
Dependable software / supporting tool chain
One graphical model
Use (formal) models for both
Checking properties (e.g. deadlock)
Towards code generation

FDR
Structuring the Embedded Control Software Code
Overview & Support reuse
Building blocks / design patterns
Separate normal flow from exception handling — AN @

Clear work flow
Separation of design steps
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Method Formalisms used UNIVERSITY OF TWENTE.

[ Embedded software /0O hergfvare
Non So Hard

real-time, real-time real-time

Physical System

Power

amplifier —»{ Actuators
Physical system

Filtering/
Scaling

control &

Interaction

Sequence
control

User interface
Supervisory
Loop control
Meas. & Act.

Safety layer

4— Sensors

Continuous Time L
Bond graphs
to differential equations
Discrete Event — several possibilities

gCSP, CSP (communicating sequential processes)
to checking
to code: CPU / FPGA

POOSL (parallel object oriented specification language)
to interpreted code

VDM++ (Vienna development method)

to checking
to code (?!)
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Formalism Continuous-Time Modeling

Essential idea
Describe relevant dynamic behaviour

Diagrams to show the overview / structure
As nature is inherently concurrent
Result in ODE: ordinary differential equations
Can be simulated to show behaviour: f(t)
Port-based approach -> Bond Graphs
Directed graph: submodels & ideal connections

Domain-independent
Analogies between physical domains
Encapsulation of contents

Interface: ports with 2 variables
(u, i): voltage & current; (F, v): force & velocity;

Equations as equalities (math. Equations)

|0 > Mse

Not as algorithm: u=i*R -> u:=i*R of i:=u/R

Jan Broenink
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UNIVERSITY OF TWENTE.

Formalism CT with Bond Graphs

Bond graphs: labeled and directed graphs

C

vertices: submodels J:
idealized descriptions, concepts In_—>MSe /3:]1_ Al

R

edges: ideal energy connection
called bonds, bilateral signal flow

Analogies —

. . —>
Capacitor Spring C +t v
Coll Mass I ~ ‘
Resistor Friction R
Voltage source Force source Se >

v — \
Voltage u Force F e — effort g\/Ln- —n \

A —» —»> N
Current i Velocity v f — flow F by b T
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Embedded software
Non oft arl
real-time real-time « real-time

Formalism Discrete-Event Modeling  |JE R |

Dataflow diagrams based on CSP process algebra

Modeling concurrent behavior
Communicating Sequential Processes (Hoare) q
Synchronous behavior (rendezvous communication)
Formally verify-able: model checker FDR2 O

Processes & Events
Process alphabet: set of events

. . Model
Communication: channels = i Priart
. . . . = 11 Parl
Scheduling at rendezvous: in application @
Process operators gl
PAR, ALT, SEQ e
PRIPAR T ;e (@
Exam ple SequenceCon —— 2LoopCon E E} D LoopCan
E — Seqz
gCSP 0 — = |.|anr2
NE -~ (F)READERZ
— -~ (F)READER1
- |Z] CODEL
- (1) WRITERZ
= SequenceCan
D (I; WRITER1
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Formallsm DE With gCSP UNIVERSITY OF TWENTE.

gCSP CSPm:

: : PriPar1 = Par1 [| {| setState [} || SequenceCon
Graphical CSP design tool Par1 = ENC [| {| encread [} [| (PWM [| {| pwmMWrite [} [| Seq1)
Animation Seq1 = Filter ; LoopCon
Code generation; SequenceCon = setState -> SKIP

LoopCon = Par2 ; CODE1 ; pwmWrite -> SKIP
++
C++, HandelC, CSPm, Occam ' Par2 = fit2loop -> SKIP || setState -> SKIP

T — =** CODE1 = SKIP
1 A8 /+ MR OO IO N |Kfew =%k K - [ Filter = encread -> SKIP ; filt2loop -> SKIP
[ S 3| . L7 . | PWM = pwmWrite -> SKIP
all = = | ENC = encread -> SKIP
g “|| Handel-C:
® S void main( void ) {
= . A chan filt2loop; chan pwmWrite; chan encread;
" )~ - ) : : chan setState;
o ||mes t = par {
| A ; par
| S ™k éNC( &encread );
= i PWM( &pwmWrite );
o | B _ seq
= s - —1 || Filter( &filt2loop, &encread );
racee e | LoopCon( &filt2loop, &pwmWrite, &setState );
. Kol ] G e |
7] = e
o SequenceCon( &setState );
B e oniion [rvwmnoterrmen Tres } !
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UNIVERSITY OF TWENTE.

Method Overview Model-Driven Design

Way of Working
Abstraction A
Hierarchy A \dea
Split into Subsystems R t
Cope with Complexity Expforatfon equirements
) ) of aitematwe
Model-driven design Specification
Design Space Exploration
Aspect models Arch’tecture
Make choices
Limit solution space |mplemer‘liati0n

Step-wise refinement _
Add detail Realization
: <l Feasibl
Lower abstraction R des,;f;pjﬂe Fina

Implementation Solunons odlict
Realization

Concurrent design trajectory
Early Integration where possible

Abstraction level
Lever of detail
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Method Design Method ECS SW

Approach
PP : : Mechatronic system
Stepwise & local refinement [/
From models towards ECS code e S
. . . . . Sica
Verification by simulation & model checking Abstr:act SW Sy)étem
layer model 7 Modeling
| o & €
Way of Working :
_ Supervisory
Discrete Event &Interdacltion
Abstract interactions concurrent actors mede
Interaction between different MoCs DE-CT Implementation
Timing low-level behaviour Interfaces l % . Interfaces
_ _ IT > U JT
Continuous Time Timing Implementation
Model & Understand Physical system (real-) time 1@ T:rget details
dynamics VYA

Simplify model, derive the control laws

Interfaces & target
Add non-ideal components (AD, DA, PC)
Scaling/conversion factors

Integrate DE & CT into ECS SW ECS SW Realization]

DE SW CTSW
layers layers

i £\
Integration ¢
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Method MoC & Method Steps UNIVERSITY OF TWENTE.

Models of Computation
A: Plant (bond graphs)

-> simulation c
B: Loop Control Laws

-> into code on target l
C: Supervisory / Interaction (G)UI,

Logic

-> code on target
Co-simulation

Combines models
Discrete Event

& Continuous Time _Stmulated ™
. . Real-time

Stepwise refinement Cantro

‘ ’ H dre

Better’ testing | | (Target*)

Concurrent engineering J{
Control
Software

(Target)
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Method MDD example, also DSE UNIVERSITY OF TWENTE.

Embedded Control System
Large Design Space A

: : Exploration of %
(Many) D.eS|gn C?homes alternatives™ Requirements «“
Restrict solution space “ =
Smaller pyramid Driﬁ?renéfgfsigq- -------- — Specification 3
choice, differen -

Examples choices solution

Modelling formalisms
& languages

Operating System choice

Parallellism

Sequential —or-
Parallel solution resource usage

Architecture
CPU FPGA, distributed central

Reachable solutions
Dependent on all choice

Abstraction level

Design Space Exploration (DSE)
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Production cell demonstrator

Based on:
Stork Plastics Moulding machine

- » .-"y\ e R
| -4 IR block
detection

/.,
"~ = it L
: Extraction
Architecture: buer
CPU (ECS / FPGA programmer) _©mume Extraction belt =5
. ‘- S Mould
FPGA (digital I/0 / ECS) gy ! t | door |
1y £ N Moulding | g-2===4----" -
i i ¥ all : Rotation  unit |—ff & Foig=
6 Production Cell units O Eumt 2
Action in the production process e,/ oA i B
Moulding, Extraction, : - -0
Transportation, Storage 3 Feeder belt : E_
Synchronize with neighbours - sensor
Deadlock possible on > 7 blocks g, " cPU/ || g0k movement |- Feeder
el ol direction unit
17
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Production Cell ECS implementations UNIVERSITY OF TWENTE.

Embedded Control System Implementations
Nr. | Name Data type Target Realization
A | gCSP RTAI Linux Floating point CPU Yes
B |POOSL Floating point CPU Yes
C | Ptolemy I Floating point CPU Yes
D |gCSP QNX RTOS Floating point CPU Partial
E | gCSP Handel-C int Integer FPGA Yes
F | gCSP Handel-C float Floating point FPGA Yes
G | SystemCSP - - No
H | VDM++ ldea
Different choices
OS: Formalisms: Tools: Architecture:
RTAI Linux CSP gCSP, FDR2 <:>
QNX CCS 20-sim A
No OS Multi MoC POOSL A@
And many more gt)elftrgg/ell Seq+ (=) Par|
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CPU gCSP RTAI (A) UNIVERSITY OF TWENTE.

Focus: proof of concept gCSP
Proof of concept gCSP for Embedded Control Systems software
Combination of untimed CSP and real-time Linux

1/O hardware Physical system

Physical process

Sensors

Realization s I
Bottom up %
6 Semi-independent units 6 PARs T

PRIPAR for (real-time)
priority levels

Periodic timing

Filtering/
Scaling

Safety layer |=
(D

-------------

Feeder WritaP'yWh

Feedor_Controller

1 ]
| Mele 1I|_M ﬂ Malding_Controllar

#{ MoldingDoor WritaPWi
TimerChannels = = =
ECS SW  Environment ngalcm e cgrrey|
Rendezvous with OS timer i = =i
Formal check with FDR2 il = ey Bt
Generated code from — = -

Controlier # Exrraction WritePWhi |5

Extra ll'n_l'.-'ll:lli:rlF rexfiless g | Extraction
- ‘. [] —
- 1 — —
| L i e

MuotionProfilas = FesderBall_ Conirolier FeederBelt_WriteFyWi

gCSP + 20-sim
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gCSP RTAI UNIVERSITY OF TWENTE.

EE S S S ESEE S S EEEEEEEEEEENS EEEEEEEEEEEEEN

//f | ;q?rwnwnwmﬁmomﬂmwmiﬁf.

|
Sequence H? Feeder_MotionProfiles

Feeder_Controller 1 Feeder WritePWM

A& - : ' = —
) —a 3
e
Molding_MotionProfiles = Molding_Controller ~ =3 MoldingDoor_WritePWM
ps ¢ - - -
L 1 s
2 T

: E):‘Lrac:ti~:)|'|E?-F:It_l'«f‘l::ltit:unF’rt;ﬂ‘iles"'(lfr ' ExtractionBelt_Controller ExtractionBelt WritePWM

g L)

|

[ | — (] = —

] — [ " — :

[] ] s

| e :

| =

Rotation_MotionProfiles g Rotation_Controller —DI—‘RAOtation_WrtePWM

Channel

Process

1 []

1% PAR construct s -
gﬂ's PRIPAR construct FeederBelt_MotionProfiles Q FeederBelt_Controller FeederBelt_WritePWM

E L)

-— 1 —

e
L
Extraction_MotionProfiles g Extraction_Controller Extraction_WritePWM

| -—

- 1

NN NN BN NN NN BN BN BN SN B SN BN BN SR B BN DN BN BN BN BN BN BN BN BN SN BN SN B DS B B BN EE B BN BN BN BN B BN SN B
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CPU gCSP RTAI (A) UNIVERSITY OF TWENTE.

Results

gCSP and CSP are usable for ECS software
Graphical process & channel structure
Debugging CSP processes difficult (textual) gCSP animation

Formal verified process/channel structure (CSPm  FDR2)

Real-time behaviour gCSP code + CTC++ library + RTAI Linux
Missed deadlines; large process-switch overhead; high CPU load
Challenge: Discrete Event CSP + Time Triggered loop control

Improvements
Timing implementation
CSP scheduling v.s. hard deadlines  QNX RTOS version CTC++ library
Modeling
Diagram structure, Interaction, Hierarchy
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CPU POOSL (B) UNIVERSITY OF TWENTE.

POOSL = Parallel Object Oriented Specification Language TU/e

CCS process algebra + Timing extension
Modeling high level behaviour Embedded Systems

Input()() Requestor Replier
FOCUS EX;Laf?:ron = g]v;lft?ll;?:’:rue; Requestor  Replier w» |
TeSt tlmlng ‘:'., @ {ngg]:?;fe] skip; |w>| = |
] =R _——(? in ? end {available:=false}; _ 2 |
Integration DE & CT L npu00- 3] 15 2| 2gm
] (b) Synchronization with Extraction buffer g 3 | |
. Extraction belt 2 o <«
Structured modeling Ol o q 2 = 5
E [available] out ! request; <@ <@ c"o"l | @
. 2 . S g
concurrency & Interaction c Foator e e block * | ) ond | | E
[:_ = false; @ @
DE CT |nte rfaC|ng ! - . ﬁmrr?;)\l/e thz Sb(laock to Feeder belt */ | %l &
— [available=false] out ! end; | ack
T|m|ng * move back to Extr. Buffer */ | |
empty = true; | |
Output()().
Rea I Izatlon (@) Physicateractions (c) Synchronization with feeder belt (d) Two-way handshake
r
TOp-dOWH Extraction (9) .. Extraction 45— Extraction
buffer P), belt — —_» Unit
No formal check I ey L e
r e
r =ready r
Results Rotation g = grart1t g " Moulding
. i = postpone i
Separated concurrent design SW layers | Unit (p) = postp eﬁ Unit
DE (high level, CT (low level) #r Tg Te r #r Te
Feeder 9 Feeder Molding
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FPGA gCSP Handel-C UNIVERSITY OF TWENTE.

Feasibility study on motion control in FPGA
Exploit parallelism

Accurate timing Structure ECS
Model-driven design (9CSP)
Choice Handel Cl
Modeling tools o FPGA

gCSP + 20-sim (Xlinix Tools)

output: floating point control algorithm

Implementation
Handel-C programming language / hardware description language
No (soft core) CPU
Small size Xilinx Spartan |ll FPGA

Challenges
Design Space Exploration
Numerical precision versus logic cell utilization (FPGA)

Embedded Software structuring
Object orientation, processes, channels FPGA: ??77?7?

FPGA bit file¢
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FPGA Loop Controller UNIVERSITY OF TWENTE.

Emb,\‘eoided Softweslgeft I/O hardware Physical system
real-time real-time i Power
. W EE /‘D/A_’amplifier_
PID loop-controller algorithm SRR
Proportional, Integral & Derivative terms 2132 5% 83 1| scaing [ Serse
Floating point
Feedback loop: error minimization
Error fluctuates around 0; calculation accuracy needed
P K,
| 7| setooint + ~ermor | . +
' 2@ . l.fe(t)dt Plant
Oyclad B .
de(t)
Dx, —

factor = 1 / ( sampletime + tauD * beta )s

uD = factor * ( tauD * previous(uD) * beta + tauD * kp * ( exrror - previous(error)) + sampletime * kp * error );

ul = previous( ul ) + sampletime * uD / tauls

output = ul + uDs
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Loop Controller Floating point alternatives UNIVERSITY OF TWENTE.

Alternative Benefit Drawback

Floating point library, High precision; re-use Very high logic utilization

CPA 2009 existing controller

Fixed point library Acceptable precision High logic utilization

External FPU High precision; re-use Only high-end FPGA;
existing controller expensive

Soft-core ¢ 1rade-off between numerical precision [5ion uniess

and logic cell utilization sign challenges
Soft-core FPU High precision; re-use Scheduler / resource manager
existing controller required
Integer, Native data type Low precision in small ranges;
CPA 2008 adaptation of the controllers
needed
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Realization Handel-C UNIVERSITY OF TWENTE.

void Rotation(chan* eb2ro_err, chan* ro2eb_err, chan* fb2ro_err, chan* ro2fb_err, chan* eb2ro, chan* ro2fb)

{

/* Declarations */

chan int cnt0_w encoder_ins
chan int 12 pwm_outs

chan int 2 endsw_ing L
chan int 1 magnet_outs

chan state_w setStates A 4 <5ﬁ:’TTH“:§$__;' I Q1
chan state_w currentState; Cortroller Safety | Command

i

ro2eb_err  eb2ro_err

ebZro W .| |

chan state_w saflctrl;

: 7 i 4
chan state_w overrides
chan int 12 ctrl2hws \Q:::;;/. \\\\\1HEH“‘T-5_HHHH“=
chan state_w ctrl2saf; _iﬂ;ﬂ,,::E Lewl-aval_my
chan c¢nt0_w hw2ctrl; ro2t %} X Y ]
chan int 1 magnet_saf; fboro_err  ro2fb_err
gcsp mu Terminate
/* Process Body */ [::::]
par {
LowLevel_hw(&encoder_in, &pwm_out, &endsw_in, &magnet_out)s
seq {
Init(&encoder_in, &magnet_out, &pwm_out)s
par {

Command(&setState, &currentState)s
Safety(&eb2ro_erxrr, &saflctrl, &ro2eb_err, &override, &encoder_in, &fb2ro_err, &pwm_out,
&setState, &xro2fb_err, &ctrl2hw, &currentState, &ctrl2saf, &hw2ctrl)s
Controller(&saf2ctrl, &override, &eb2ro, &ctrl2hw, &ctrl2saf, &ro2fb, &hw2ctrl, &magnet_saf);
}

Terminate(&encoder_in, &magnet_out., &pwm_out);
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Results FPGA Usage (integer) UNIVERSITY OF TWENTE.

Real para”ellsm Production Cell - Top-level gCSP
6 Production Cell Units run parallel
Integer algorithm (no floating point)

Manual translation  time consuming [=J5{==J< T e y e )
Accurate timing D ] ot e
Estimated FPGA Usage .. i ull Ly oo

Xilinx Spartan 3s1500
Element LUTs (amount) | Flipflops (amount) | Memory| Used ALUs
PID controllers 13.5% (4038) 0.4% (126) 0.0% 0
Motion profiles | 0.9% (278) 0.2% (72) 0.0% 0
/O + PCI 3.6%  (1090) 1.6% (471) 2.3% 0
S&C framework | 10.3%  (3089) 8.7%  (2616) 0.6% 0
Free 71.7%  (21457)| 89.1%  (26667)| 97.1% 32

PID controllers take 50% of the used space, <1% of the code
PID controllers run | | @ 1 ms with idle time 99,95%
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FPGA Trade-offs floating point UNIVERSITY OF TWENTE.

Sequential  Pipelined Handel-C floating point library
Sequential  Parallel Production Cell Unit (PCU) execution
32 bit Handel-C  16-bit Xilinx Coregen floating point
Soft-core or hard-core CPU with floating point unit.

Method Floating point\
v
Accuracy ¢ 32bit 16 bit/ 32-bit* 32-bit* ¢
Language Handel-C Handel-C ANSI-C
\ 4 v
Codegen + Softcore or
Support Library/ | Handel-C T Handel-C hardcore
IP'Core Floatlng p0|nt Plpellned wrapper CPU w|th
library FPU*
PCU execution order Seq Par
(1) (3) (5) (6) (7)
Implementation platform\_/ FPGA *not yet implemented
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Results FPGA Usage (floating point)  UNIVERSITY OF TWENTE.

Less parallelism
Sequential PCU execution, but still meeting our deadlines
Sequential floating point calculation
Central re-used (scheduled) Motion profile + PID controller process
Estimated FPGA Usage
Xilinx Spartan 3s1500

Element LUTs (amount) | Flipflops (amount) | Memory |Used ALUs

Floating point 27.4%  (8191) 19.7%  (5909) 0.0% 4
library + wrappers

PID controllers 4.2%  (1251) 0.3% (91) 0.0% 0
Motion profiles 1.1% (314) 0.5% (163) 0.0% 0
I/0 + PCI 4.1%  (1250) 1.8% (534) 2.3% 0
S&C framework 5.6%  (1666) 4.2%  (1250) 0.3% 0
Free 57.6% (21457) 73.5% (22005) 97.4% 28

Red = more resource usage, Green = less resource usage compared to int version
Floating point library takes 37% of the used space
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Evaluation UNIVERSITY OF TWENTE.

Common CPU & FPGA

Hierarchical process-oriented implementations

Layered ‘software’ structure with DE + CT/DT parts

Create re-usable standardized building blocks
Modeling process structures  Implementation efficiency

Many small processes  scheduling overhead

Often multiple channels between them  Needed: buses
Formal verification

User-friendly model-to-formal language translation still lacking
FPGA implementations

Alternative for common CPU / PLC solutions

Accurate timing

Design time is higher and black box debugging is more difficult
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Structuring ECS UNIVERSITY OF TWENTE.

Structuring the Embedded Control Software
Overview for the designer
Re-usable framework for SW and HW based designs
Building blocks / design patterns
Separate normal flow from fault handling
Process-oriented approach
Inspired by CSP, block diagrams, bond graphs
Describe concurrent behaviour
Structuring in layers is supported
Use benefits of CSP (checking)

Embedded software 1/O hardware Physical system
’\H'n Slotft |-llatr' Power
real-time real-ume real-tme W
D/A > o »{ Actuators
> clo fo| 5 I/ amplifier
8132 8l gl > S T—
o &S00 5 = sical process
3R E e
HEREI R K Filtering/
<58 =l ol g iltering
a - = ol » -1-'A/D<- Scaling 41— Sensors
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ECS structure Production cell UNIVERSITY OF TWENTE.

6 independent Production Cell Units
Interaction: handshake for block delivery
No central supervisor

¢ | - axtraction robot
Extraction belt Extraction
PCLU PCU j
L
Rotation Molder door
FCU PCU
I
Feeder bell Feeder
PCU PCU
> —_—

— CON Ol Rendesyvous channeHappy Tow

Jan Broenink ECS with Formal Methods and Engineering Models 33



ECS structure Top level

Add Error communication

Inform neighbours when needed

UNIVERSITY OF TWENTE.

—— <
_________ Extraction belt o Extraction PR
:' PCU PCU '
. 0 q o
2 v _
Rotation Molder door
PCU PCU
) A . 4
E .. Pa— .. E
: Feeder belt Feeder ;
"""" - PCU B PCU
2 —

# Controller Rendezvous channel/Happy flow
----------- # Error channel

PCU: Production cell Control Unit

ECS with Formal Methods and Engineering Models 34
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ECS structure one PCU UNIVERSITY OF TWENTE.

_ . 0 . FPGA Host PC
I From Previous PCU To previous s From previous
PCU ' PCU
. . ] '
l Production Cell Unit (PCU) ¢
'
State Out : :
'< Stateln M ' ' — ™ PCl-—* User
' .
Controller | €---, I ' : Command -« —bus «.— Interface
' 0
Controllerl I : .
override ' ’ | ‘
- '
: | : v |
0
0 > State InJ
: =l < S out
“Sensors | Safety " Sensors Low-level
Actuators Actuators Hardware
0 ;
0 0
——
To next From Next : ¢ To Next
Vv PCU PCU : v PCU To Production Cell

From Production Cell

» Controller handshake channel — e - State channel
- —— == - User interface channel Hardware interface channel
----------- » Error channel
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ECS structure Controller UNIVERSITY OF TWENTE.

Production Cell Unit Controller

Sequence controller: determine order of actions
Setpoint generator: generate motion profiles
Loop controller: control law

From previous PCU

State in FPGA
v ¥
o w—— .
request . setpoint
Sequence Controller Setpoint generator =— — Loop Controller
« L] O L] L]
I — ready done
[ i
[ ]
(]
l I override
A 4 Digital Out
Tonext PCU  State out Digital In P Controller handshake channel Encoder PWM

p Motion profile channel
........... p Error channel
p State channel

Hardware interface channel
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ECS structure PCU Safety layer UNIVERSITY OF TWENTE.

Production Cell Unit Safety layer
Exception catcher: detect errors
Exception handler: handle & select required action
State handler: put PCU in a safe state

Controller

’
' override from
toController | fromController prevErrOuté :prevErrIn ControIIeT Controller FPGA
' . 1
' [Safety] 4 :
' Yy :
setState
. exception . errState — | —
Exception catcher s-=<<-- » Exception handler se=<-- »  State handler currentState
_______ _>
v
A .
[ |
from to . '
Low-level Low-level hextErrin hextErrOut
Hardware Hardware . :
; \ 4
Encoder, End  PWM, magnet ~ Sends occurred o - User interface channel
switches, IR exception or
defectors sanitycheck === eeseesscees p Error channel
failure P State channel

Hardware interface channel
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axtraction rabot

ECS structure Control Sequence i i

=== axiraction balt i 1
S rotalion robot
P 2 '..F
S, _
o i
|

' feeder bell

Feeder belt Feeder Moulder door Extractor Extraction belt

Flow normal operation

molding machins

Rotation arm

- Feeder home? »

Transport block to
feeder, then stop

Feeder out—»

——Door closed?—»
Push block to the
door

- Open the door—»

- Extactor home? »
Door open? — »

Bring feeder Opir} ioor o
home ——Pick up block—»
Close door Pick and place
block
——Transport block—»
Transport block to
rotation arm
- Pick up block — »
< Transport block

——Feeder home?—»
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ECS structure Error propagation UNIVERSITY OF TWENTE.

Flow of error operation

Feeder belt Feeder Moulder door

\
Set feeder state to
‘home’

< stop ‘ open >

Feeder belt

Feeder |
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Conclusions & Ongoing work UNIVERSITY OF TWENTE.

Insight maturity (academic) tools for ECS design
Standardized process-oriented layered ECS structure
Trade-off CPU / FPGA solution
CPU: short design time, real-time behaviour critical issue
FPGA: longer design time, more complicated, accurate timing

Design Space Exploration results
7 different implementations for same setup
Valuable information for improvement design methods & tooling

Ongoing work

gCSP version 2
Improvement Design Methodology
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UNIVERSITY OF TWENTE.

CPU controlled
gCSP RTAI version

CPU controlled
Ptolemy version
Compared to 3D model

FPGA controlled
Parallel, integer controllers
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