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Introduction Goals & Challenges

 Realization of Embedded Control System (ECS) software
 For mechatronics & robotic applications
 Design Methodology
 Model-driven ECS software design
 Models of Controllers and Robot Behavior

 Dependable software
 All code generated!

 Supporting tool chain
 Clear work flow -> separation of design steps

 ECS design challenges
 Heterogeneous nature
 Large design space
 Special demands on the software
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Introduction Approach

 Essential Properties Embedded Control Software
 Purpose: control physical systems
 Dynamic behavior of the physical system essential for SW
 Dependability: Safety, Reliability; Real time
 Challenge: Heterogeneity
 Layered structure, building blocks, reuse
 Multiple modeling formalisms / models of computation
 Challenge: Large design space
 Clear design flow, Focus per design step
 Challenge: Demands on Software
 Real-time constraints with low latency
 Early-phase testing via (co)-simulation
 Support in method
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Introduction Embedded Control System

 Essential Properties Embedded Control Software
 Purpose: control physical systems
 Dynamic behaviour of the physical system essential for SW
 Dependability: Safety, Reliability

 Embedded Control System (ECS) software
 Layered structure

 Real-time constraints with low-latency requirement
 Combination of time-triggered & event driven parts
 Multiple Models of Computation (MoC)
 Multiple Modeling formalisms
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Method Starting Points

 Design Methodology
 Model-driven ECS software design
 Dependable software / supporting tool chain

 Use (formal) models for both
 Checking properties (e.g. deadlock)
 Towards code generation

 Structuring the Embedded Control Software 
 Overview & Support reuse
 Building blocks / design patterns
 Separate normal flow from exception handling

 Clear work flow
 Separation of design steps

One graphical model

FDR
Code
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Method Formalisms used

 Continuous Time
 Bond graphs
 to differential equations

 Discrete Event – several possibilities
 gCSP, CSP (communicating sequential processes)
 to checking
 to code: CPU / FPGA

 POOSL (parallel object oriented specification language)
 to interpreted code

 VDM++ (Vienna development method)
 to checking
 to code  (?!)
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Formalism Continuous-Time Modeling
 Essential idea
 Describe relevant dynamic behaviour
 Diagrams to show the overview / structure
 As nature is inherently concurrent

 Result in ODE: ordinary differential equations
 Can be simulated to show behaviour: f(t)
 Port-based approach -> Bond Graphs
 Directed graph: submodels & ideal connections
 Domain-independent
 Analogies between physical domains

 Encapsulation of contents
 Interface: ports with 2 variables
 (u, i): voltage & current; (F, v): force & velocity; 

 Equations as equalities (math. Equations)
 Not as algorithm: u = i * R   -> u := i * R  of i := u / R

I

C

1

R

MSe
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Formalism CT with Bond Graphs

 Bond graphs: labeled and directed graphs
 vertices: submodels
 idealized descriptions, concepts

 edges: ideal energy connection
 called bonds, bilateral signal flow

 Analogies
 Capacitor Spring C
 Coil Mass I
 Resistor Friction R
 Voltage source Force source Se

 Voltage u Force F e – effort
 Current i Velocity v f – flow

I

C

1

R

MSe

+
_   
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Formalism Discrete-Event Modeling
 Dataflow diagrams based on CSP process algebra
 Modeling concurrent behavior
 Communicating Sequential Processes (Hoare)
 Synchronous behavior (rendezvous communication)
 Formally verify-able: model checker FDR2
 Processes & Events
 Process alphabet: set of events
 Communication: channels
 Scheduling at rendezvous: in application
 Process operators 
 PAR, ALT, SEQ
 PRI-PAR
 Example
 gCSP
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Formalism DE with gCSP
 gCSP
 Graphical CSP design tool
 Animation
 Code generation:
 C++, HandelC, CSPm, Occam

CSPm:
PriPar1 = Par1 [| {| setState |} |] SequenceCon
Par1 = ENC [| {| encread |} |] (PWM [| {| pwmWrite |} |] Seq1)
Seq1 = Filter ; LoopCon
SequenceCon = setState -> SKIP
LoopCon = Par2 ; CODE1 ; pwmWrite -> SKIP
Par2 = filt2loop -> SKIP ||| setState -> SKIP
CODE1 = SKIP
Filter = encread -> SKIP ; filt2loop -> SKIP
PWM = pwmWrite -> SKIP
ENC = encread -> SKIP
Handel-C:
void main( void ) {

chan filt2loop; chan pwmWrite; chan encread;
chan setState;
par {

par {
ENC( &encread );
PWM( &pwmWrite );
seq {

Filter( &filt2loop, &encread );
LoopCon( &filt2loop, &pwmWrite, &setState );

}
}
SequenceCon( &setState );

}
}
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Method Overview Model-Driven Design
 Way of Working
 Abstraction
 Hierarchy
 Split into Subsystems
 Cope with complexity

 Model-driven design
 Design Space Exploration
 Aspect models
 Make choices
 Limit solution space

 Step-wise refinement
 Add detail
 Lower abstraction

 Implementation
 Realization

 Concurrent design trajectory
 Early Integration where possible
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Method Design Method ECS SW

 Approach
 Stepwise & local refinement
 From models towards ECS code

 Verification by simulation & model checking

 Way of Working
 Discrete Event
 Abstract interactions concurrent actors
 Interaction between different MoCs
 Timing low-level behaviour

 Continuous Time
 Model & Understand Physical system 

dynamics
 Simplify model, derive the control laws
 Interfaces & target
 Add non-ideal components (AD, DA, PC)
 Scaling/conversion factors

 Integrate DE & CT into ECS SW

Mechatronic system

ECS SW Realization

CT SW
layers

DE SW
layers

Integration

Timing
(real-) time

Implementation
Target details

Implementation
Interfaces

DE - CT
Interfaces

Supervisory
& Interaction

model

Control
Law

Design

Physical
System 

Modeling

Top level
Abstract SW
layer model

Mechatronic systemMechatronic system

ECS SW RealizationECS SW Realization

CT SW
layers

DE SW
layers

Integration

CT SW
layers

DE SW
layers

CT SW
layers

DE SW
layers

Integration

Timing
(real-) time

Timing
(real-) time

Timing
(real-) time

Implementation
Target details

Implementation
Target details

Implementation
Target details

Implementation
Interfaces

Implementation
Interfaces

Implementation
Interfaces

DE - CT
Interfaces
DE - CT

Interfaces
DE - CT

Interfaces

Supervisory
& Interaction

model

Supervisory
& Interaction

model

Supervisory
& Interaction

model

Control
Law

Design

Control
Law

Design

Control
Law

Design

Physical
System 

Modeling

Physical
System 

Modeling

Physical
System 

Modeling

Top level
Abstract SW
layer model

Top level
Abstract SW
layer model

Top level
Abstract SW
layer model
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Method MoC & Method Steps

 Models of Computation
 A: Plant (bond graphs) 

-> simulation
 B: Loop Control Laws

-> into code on target
 C: Supervisory / Interaction

-> code on target
 Co-simulation
 Combines models
 Discrete Event  

& Continuous Time
 Stepwise refinement
 ‘Better’ testing
 Concurrent engineering 
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Method MDD example, also DSE

 Embedded Control System
 Large Design Space
 (Many) Design Choices
 Restrict solution space
 Smaller pyramid

 Examples choices
 Modelling formalisms

& languages
 Operating System choice
 Parallellism
 Sequential –or-

Parallel solution  resource usage
 Architecture
 CPU  FPGA, distributed  central

 Reachable solutions
 Dependent on all choice

FPGAFPGACPUCPU

Design Space Exploration (DSE)
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Test Case Production Cell

Production cell demonstrator
 Based on:
 Stork Plastics Moulding machine

 Architecture:
 CPU (ECS / FPGA programmer)
 FPGA (digital I/O / ECS)

 6 Production Cell units
 Action in the production process
 Moulding, Extraction,

Transportation, Storage
 Synchronize with neighbours
 Deadlock possible on > 7 blocks CPU / 

FPGA

Motor 150W

Gearhead 43:1

Encoder 

Motor 150W

Gearhead 43:1

Encoder 

Al

Extraction unit

Moulder
door

Feeder
unit

Feeder belt

Extraction belt

Rotation
unit

Motor 70W

Gearhead 18:1

Encoder 

Magnet

= Sensor

Extraction
buffer

Moulding
unit

= Block movement 
direction

IR block 
detection
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Production Cell ECS implementations

 Embedded Control System Implementations

 Different choices

 And many more 

IdeaVDM++H
No--SystemCSPG
YesFPGAFloating pointgCSP Handel-C floatF
YesFPGAIntegergCSP Handel-C intE
PartialCPUFloating pointgCSP QNX RTOSD
YesCPUFloating pointPtolemy IIC
YesCPUFloating pointPOOSLB
YesCPUFloating pointgCSP RTAI LinuxA
RealizationTargetData typeNameNr.

FPGAFPGACPUCPU

Architecture:

Par | |Seq

Tools:
 gCSP, FDR2
 20-sim
 POOSL
 Ptolemy II
 Overture

Formalisms:
 CSP
 CCS
 Multi MoC

OS:
 RTAI Linux
 QNX
 No OS
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CPU gCSP RTAI (A)

 Focus: proof of concept gCSP
 Proof of concept gCSP for Embedded Control Systems software
 Combination of untimed CSP and real-time Linux

 Realization
 Bottom up
 6 Semi-independent units  6 PARs
 PRIPAR for (real-time)

priority levels
 Periodic timing
 TimerChannels
 ECS SW  Environment
 Rendezvous with OS timer

 Formal check with FDR2
 Generated code from
 gCSP + 20-sim
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gCSP RTAI
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CPU gCSP RTAI (A)

 Results
 gCSP and CSP are usable for ECS software
 Graphical process & channel structure
 Debugging CSP processes difficult (textual)  gCSP animation

 Formal verified process/channel structure (CSPm  FDR2)
 Real-time behaviour gCSP code + CTC++ library + RTAI Linux
 Missed deadlines; large process-switch overhead; high CPU load
 Challenge: Discrete Event CSP + Time Triggered loop control

 Improvements
 Timing implementation
 CSP scheduling v.s. hard deadlines  QNX RTOS version CTC++ library

 Modeling
 Diagram structure, Interaction, Hierarchy
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CPU POOSL (B)

 POOSL = Parallel Object Oriented Specification Language TU/e
 CCS process algebra + Timing extension
 Modeling high level behaviour Embedded Systems
 Focus
 Test timing
 Integration DE & CT
 Structured modeling
 concurrency & Interaction
 DE CT interfacing
 Timing

 Realization
 Top-down
 No formal check
 Results
 Separated concurrent design SW layers
 DE (high level, CT (low level)
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FPGA gCSP Handel-C

 Feasibility study on motion control in FPGA
 Exploit parallelism
 Accurate timing
 Model-driven design
 Choice
 Modeling tools
 gCSP + 20-sim 
 output: floating point control algorithm

 Implementation
 Handel-C programming language / hardware description language
 No (soft core) CPU
 Small size Xilinx Spartan III FPGA

 Challenges
 Design Space Exploration
 Numerical precision versus logic cell utilization (FPGA)

 Embedded Software structuring
 Object orientation, processes, channels  FPGA: ???? 

Control Laws
(20sim)

Structure ECS
(gCSP)

Handel C

To FPGA
(Xlinix Tools)

FPGA bit file
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FPGA Loop Controller

 PID loop-controller algorithm
 Proportional, Integral & Derivative terms
 Floating point
 Feedback loop: error minimization
 Error fluctuates around 0; calculation accuracy needed

setpoint error D2

D1

Plant

D

Cycloid

∫
t

i deK
0

)( ττ

dt
tdeK d
)(

)(teK pPP

II

DD

factor =  1 /  (  sampl etime +  tauD *  beta  ) ;

uD =  factor *  (  tauD *  previous(uD) *  beta  +  tauD *  kp *  (  error - previous(error)) +  sampl etime *  kp *  error ) ;

uI =  previous( uI ) +   sampl etime *  uD /  tauI;

output  =  uI +  uD;
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Loop Controller Floating point alternatives

Low precision in small ranges; 
adaptation of the controllers 
needed

Native data typeInteger, 
CPA 2008

Scheduler / resource manager 
required

High precision; re-use 
existing controller

Soft-core FPU

High logic utilization unless 
stripped; co-design challenges

High precision; re-use 
existing controller

Soft-core CPU+FPU

Only high-end FPGA; 
expensive

High precision; re-use 
existing controller

External FPU

High logic utilizationAcceptable precisionFixed point library

Very high logic utilizationHigh precision; re-use 
existing controller

Floating point library, 
CPA 2009

DrawbackBenefitAlternative

Trade-off between numerical precision
and logic cell utilization

Trade-off between numerical precision
and logic cell utilization
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Realization Handel-C

void Rotation(chan*  eb2ro_ err,  chan* ro2 eb_ err,  chan* fb2ro_ err,  chan* ro2fb_err,  chan* eb2ro ,  chan* ro2fb)
{

/ *  De c larations  * /
chan int cnt0_w  encoder_in ;
chan int 12  pwm_out ;
chan int 2  endsw_in ;
chan int 1  magnet_out ;
chan state _w setStat e ;
chan state _w currentState ;
chan state _w saf2 ctrl ;
chan state _w ov erride ;
chan int 12  ctrl2hw;
chan state _w ctrl2saf ;
chan cnt0_w hw2ctrl ;
chan int 1  magnet_saf ;

/ *  Proc ess  Body  * /
par {

LowLeve l_hw(&encoder_in ,  &pwm_out ,  &endsw_in ,  &magnet_out) ;
seq {

Init(&encoder_in ,  &magnet_out ,  &pwm_out) ;
par {

Command(&setState ,  &currentStat e) ;
Safety(&eb2ro_err,  &saf2ctrl ,  &ro2 eb_ err,  &override ,  &encoder_in ,  &fb2ro_err,  &pwm_out ,  

&setStat e ,  &ro2fb_err,  &ctrl2hw ,  &currentStat e ,  &ctrl2saf ,  &hw2ctrl) ;
Control l er(&saf2ctrl ,  &override ,  &eb2ro ,  &ctrl2hw,  &ctrl2saf ,  &ro2fb ,  &hw2ctrl ,  &magnet_saf);

}
Terminat e(&encoder_in ,  &magnet_out ,  &pwm_out) ;

}
}

}

gCSP PCUgCSP PCU
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Results FPGA Usage (integer)

 Real parallelism
 6 Production Cell Units run parallel
 Integer algorithm (no floating point)
 Manual translation  time consuming
 Accurate timing
 Estimated FPGA Usage
 Xilinx Spartan 3s1500

89.1%
8.7%
1.6%
0.2%
0.4%

Flipflops

71.7%
10.3%
3.6%
0.9%

13.5%
LUTs

97.1%
0.6%
2.3%
0.0%
0.0%

Memory

32
0
0
0
0

Used ALUs

(26667)(21457)Free
(2616)(3089)S&C framework
(471)(1090)I/O + PCI
(72)(278)Motion profiles

(126)(4038)PID controllers
(amount)(amount)Element

PID controllers take 50% of the used space, <1% of the code
PID controllers run | | @ 1 ms with idle time 99,95%
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Handel-C
Floating point

library

Codegen + 
Handel-C
wrapper

Method

Language

Support Library/
IP-core

PCU execution order

Implementation platform

Accuracy

* not yet implemented

32 bit 16 bit / 32-bit*

ParSeq ParSeq ParSeq

Softcore or
hardcore
CPU with

FPU*

Seq

PipelinedSeq

ANSI-C

32-bit*

Floating point

FPGA

(1) (2) (3) (4) (5) (6) (7)

Handel-C Handel-C

FPGA Trade-offs floating point

 Sequential Pipelined Handel-C floating point library
 Sequential Parallel Production Cell Unit (PCU) execution
 32 bit Handel-C 16-bit Xilinx Coregen floating point
 Soft-core or hard-core CPU with floating point unit.
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Results FPGA Usage (floating point)

 Less parallelism
 Sequential PCU execution, but still meeting our deadlines
 Sequential floating point calculation
 Central re-used (scheduled) Motion profile + PID controller process
 Estimated FPGA Usage
 Xilinx Spartan 3s1500

Floating point library takes 37% of the used space

73.5%
4.2%
1.8%
0.5%
0.3%

19.7%
Flipflops

57.6%
5.6%
4.1%
1.1%
4.2%

27.4%
LUTs

40.0%(5909)(8191)Floating point 
library + wrappers

97.4%
0.3%
2.3%
0.0%
0.0%

Memory

28
0
0
0
0

Used ALUs

(22005)(21457)Free
(1250)(1666)S&C framework
(534)(1250)I/O + PCI
(163)(314)Motion profiles
(91)(1251)PID controllers

(amount)(amount)Element

Red = more resource usage, Green = less resource usage compared to int version
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Evaluation

 Common CPU & FPGA
 Hierarchical process-oriented implementations
 Layered ‘software’ structure with DE + CT/DT parts
 Create re-usable standardized building blocks
 Modeling process structures  Implementation efficiency
 Many small processes  scheduling overhead
 Often multiple channels between them  Needed: buses
 Formal verification
 User-friendly model-to-formal language translation still lacking
 FPGA implementations
 Alternative for common CPU / PLC solutions
 Accurate timing
 Design time is higher and black box debugging is more difficult
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Structuring ECS

 Structuring the Embedded Control Software 
 Overview for the designer
 Re-usable framework for SW and HW based designs
 Building blocks / design patterns
 Separate normal flow from fault handling
 Process-oriented approach
 Inspired by CSP, block diagrams, bond graphs
 Describe concurrent behaviour
 Structuring in layers is supported
 Use benefits of CSP (checking)
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ECS structure Production cell

 6 independent Production Cell Units
 Interaction: handshake for block delivery
 No central supervisor
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ECS structure Top level

 Add Error communication
 Inform neighbours when needed

PCU: Production cell Control Unit
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ECS structure one PCU
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ECS structure Controller

 Production Cell Unit Controller
 Sequence controller: determine order of actions
 Setpoint generator: generate motion profiles
 Loop controller: control law
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ECS structure PCU Safety layer

 Production Cell Unit Safety layer
 Exception catcher: detect errors
 Exception handler: handle & select required action
 State handler: put PCU in a safe state
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ECS structure Control Sequence

 Flow normal operation

Feeder belt Rotation armExtractorMoulder door Extraction beltFeeder

Feeder home?

Feeder out

Transport block to 
feeder, then stop

Transport block to 
rotation arm 

Door closed?
Push block to the 
door

Open the door Extactor home?Door open?
Open doorBring feeder 

home Pick up block
Pick and place 
block

Transport block

Close door

Pick up block
Transport block

Feeder home?
...
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ECS structure Error propagation

 Flow of error operation

Feeder belt

Feeder

Moulder
door

Moulder
door
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Conclusions & Ongoing work

 Insight maturity (academic) tools for ECS design
 Standardized process-oriented layered ECS structure
 Trade-off CPU / FPGA solution
 CPU: short design time, real-time behaviour  critical issue
 FPGA: longer design time, more complicated, accurate timing

 Design Space Exploration results
 7 different implementations for same setup
 Valuable information for improvement design methods & tooling

 Ongoing work
 gCSP version 2
 Improvement Design Methodology
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Movies

 CPU controlled
 gCSP RTAI version

 CPU controlled
 Ptolemy version
 Compared to 3D model

 FPGA controlled
 Parallel, integer controllers
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