UNIVERSITY OF TWENTE.

Embedded Control Software DeS|gn
with Formal Methods and
Engineering models

BCS FACS / FME evening seminar

% BCS, London, 13-09-2010

[1 - I

Control Engineering, Department of Electrical Engineering,
University of Twente, The Netherlands

Contents

‘ Embedded software
Non 0

UNIVERSITY OF TWENTE.

Physical System

Soft Hard
real-time, real-time real-time

Power
amplifier

_

Actuators

Physical system

control &

Interaction

Sequence
control

Introduction

User interface
Supervisory
Loop control
Meas. & Act.

Safety layer

Filtering/
Scaling

Sensors Q

=
=

Goals & Challenges .

Properties Embedded Control Software
Method

Formalisms: DE/CT

Model-driven design, Design Space Exploration
Test case: production cell

Several DE formalisms: CSP, POOSL

2 types of control computers; CPU, FPGA
Structuring the embedded software

Building blocks

Separated error handling
Conclusions & Ongoing Work

Jan Broenink ECS with Formal Methods and Engineering Models

Introduction Goals & Challenges UNIVERSITY OF TWENTE.

Realization of Embedded Control System (ECS) software
For mechatronics & robotic applications
Design Methodology

Model-driven ECS software design
Models of Controllers and Robot Behavior

Dependable software
All code generated!

Supporting tool chain
Clear work flow -> separation of design steps

ECS design challenges
Heterogeneous nature
Large design space
Special demands on the software

Jan Broenink ECS with Formal Methods and Engineering Models 3

Introduction Approach UNIVERSITY OF TWENTE.

Essential Properties Embedded Control Software
Purpose: control physical systems
Dynamic behavior of the physical system essential for SW
Dependability: Safety, Reliability; Real time
Challenge: Heterogeneity
Layered structure, building blocks, reuse
Multiple modeling formalisms / models of computation
Challenge: Large design space
Clear design flow, Focus per design step
Challenge: Demands on Software
Real-time constraints with low latency
Early-phase testing via (co)-simulation
Support in method

Jan Broenink ECS with Formal Methods and Engineering Models 4

Introduction Embedded Control System UNIVERSITY OF TWENTE.

Essential Properties Embedded Control Software
Purpose: control physical systems
Dynamic behaviour of the physical system essential for SW
Dependability: Safety, Reliability

Embedded Control System (ECS) software

Embedded software I/O hardware Physical System
Non Soft Hard
real-time, real-time real-time
P —» D/A > Power » Actuators
Q — | o [amplifier
& | 2% S| Ol o |©
t 132 0log [E] F|Z
2 GEJ% 8 0= |8 > °§5)_ Physical system
= 1262|3382 |w® —
O 5, 0 © | ©
@ |@p - = |9 S|v |s | AD|e Fllter!ng/ < Sensors
=2 Scaling
|

Real-time constraints with low-latency requirement

Combination of time-triggered & event driven parts
Multiple Models of Computation (MoC)
Multiple Modeling formalisms

Jan Broenink ECS with Formal Methods and Engineering Models 5

Method Starting Points UNIVERSITY OF TWENTE.

Design Methodology
Model-driven ECS software design
Dependable software / supporting tool chain
One graphical model
Use (formal) models for both
Checking properties (e.g. deadlock)
Towards code generation

FDR
Structuring the Embedded Control Software Code
Overview & Support reuse
Building blocks / design patterns
Separate normal flow from exception handling — AN @

Clear work flow
Separation of design steps

Jan Broenink ECS with Formal Methods and Engineering Models 6

Method Formalisms used UNIVERSITY OF TWENTE.

[Embedded software /0O hergfvare
Non So Hard

real-time, real-time real-time

Physical System

Power

amplifier —»{ Actuators
Physical system

Filtering/
Scaling

control &

Interaction

Sequence
control

User interface
Supervisory
Loop control
Meas. & Act.

Safety layer

4— Sensors

Continuous Time L
Bond graphs
to differential equations
Discrete Event — several possibilities

gCSP, CSP (communicating sequential processes)
to checking
to code: CPU / FPGA

POOSL (parallel object oriented specification language)
to interpreted code

VDM++ (Vienna development method)

to checking
to code (?!)

Jan Broenink ECS with Formal Methods and Engineering Models 7

Formalism Continuous-Time Modeling

Essential idea
Describe relevant dynamic behaviour

Diagrams to show the overview / structure
As nature is inherently concurrent
Result in ODE: ordinary differential equations
Can be simulated to show behaviour: f(t)
Port-based approach -> Bond Graphs
Directed graph: submodels & ideal connections

Domain-independent
Analogies between physical domains
Encapsulation of contents

Interface: ports with 2 variables
(u, i): voltage & current; (F, v): force & velocity;

Equations as equalities (math. Equations)

|0 > Mse

Not as algorithm: u=i*R -> u:=i*R of i:=u/R

Jan Broenink

ECS with Formal Methods and Engineering Models

UNIVERSITY OF TWENTE.

Formalism CT with Bond Graphs

Bond graphs: labeled and directed graphs

C

vertices: submodels J:
idealized descriptions, concepts In_—>MSe /3:]1_ Al

R

edges: ideal energy connection
called bonds, bilateral signal flow

Analogies —

. . —>
Capacitor Spring C +t v
Coll Mass I ~ ‘
Resistor Friction R
Voltage source Force source Se >

v — \
Voltage u Force F e — effort g\/Ln- —n \

A —» —»> N
Current i Velocity v f — flow F by b T

Jan Broenink ECS with Formal Methods and Engineering Models 9

Embedded software
Non oft arl
real-time real-time « real-time

Formalism Discrete-Event Modeling |JE R |

Dataflow diagrams based on CSP process algebra

Modeling concurrent behavior
Communicating Sequential Processes (Hoare) q
Synchronous behavior (rendezvous communication)
Formally verify-able: model checker FDR2 O

Processes & Events
Process alphabet: set of events

. . Model
Communication: channels = i Priart
. . . . = 11 Parl
Scheduling at rendezvous: in application @
Process operators gl
PAR, ALT, SEQ e
PRIPAR T ;e (@
Exam ple SequenceCon —— 2LoopCon E E} D LoopCan
E — Seqz
gCSP 0 — = |.|anr2
NE -~ (F)READERZ
— -~ (F)READER1
- |Z] CODEL
- (1) WRITERZ
= SequenceCan
D (I; WRITER1

Jan Broenink ECS with Formal Methods and Engineering Models 10

Formallsm DE With gCSP UNIVERSITY OF TWENTE.

gCSP CSPm:

: : PriPar1 = Par1 [| {| setState [} || SequenceCon
Graphical CSP design tool Par1 = ENC [| {| encread [} [| (PWM [| {| pwmMWrite [} [| Seq1)
Animation Seq1 = Filter ; LoopCon
Code generation; SequenceCon = setState -> SKIP

LoopCon = Par2 ; CODE1 ; pwmWrite -> SKIP
++
C++, HandelC, CSPm, Occam ' Par2 = fit2loop -> SKIP || setState -> SKIP

T — =** CODE1 = SKIP
1 A8 /+ MR OO IO N |Kfew =%k K - [Filter = encread -> SKIP ; filt2loop -> SKIP
[S 3| . L7 . | PWM = pwmWrite -> SKIP
all = = | ENC = encread -> SKIP
g “|| Handel-C:
® S void main(void) {
= . A chan filt2loop; chan pwmWrite; chan encread;
")~ -) : : chan setState;
o ||mes t = par {
| A ; par
| S ™k éNC(&encread);
= i PWM(&pwmWrite);
o | B _ seq
= s - —1 || Filter(&filt2loop, &encread);
racee e | LoopCon(&filt2loop, &pwmWrite, &setState);
. Kol] G e |
7] = e
o SequenceCon(&setState);
B e oniion [rvwmnoterrmen Tres } !

Jan Broenink ECS with Formal Methods and Engineering Models 11

UNIVERSITY OF TWENTE.

Method Overview Model-Driven Design

Way of Working
Abstraction A
Hierarchy A \dea
Split into Subsystems R t
Cope with Complexity Expforatfon equirements
)) of aitematwe
Model-driven design Specification
Design Space Exploration
Aspect models Arch’tecture
Make choices
Limit solution space |mplemer‘liati0n

Step-wise refinement _
Add detail Realization
: <l Feasibl
Lower abstraction R des,;f;pjﬂe Fina

Implementation Solunons odlict
Realization

Concurrent design trajectory
Early Integration where possible

Abstraction level
Lever of detail

Jan Broenink ECS with Formal Methods and Engineering Models 12

Method Design Method ECS SW

Approach
PP : : Mechatronic system
Stepwise & local refinement [/
From models towards ECS code e S
. Sica
Verification by simulation & model checking Abstr:act SW Sy)étem
layer model 7 Modeling
| o & €
Way of Working :
_ Supervisory
Discrete Event &Interdacltion
Abstract interactions concurrent actors mede
Interaction between different MoCs DE-CT Implementation
Timing low-level behaviour Interfaces l % . Interfaces
_ _ IT > U JT
Continuous Time Timing Implementation
Model & Understand Physical system (real-) time 1@ T:rget details
dynamics VYA

Simplify model, derive the control laws

Interfaces & target
Add non-ideal components (AD, DA, PC)
Scaling/conversion factors

Integrate DE & CT into ECS SW ECS SW Realization]

DE SW CTSW
layers layers

i £\
Integration ¢

Jan Broenink ECS with Formal Methods and Engineering Models 13

Method MoC & Method Steps UNIVERSITY OF TWENTE.

Models of Computation
A: Plant (bond graphs)

-> simulation c
B: Loop Control Laws

-> into code on target l
C: Supervisory / Interaction (G)UI,

Logic

-> code on target
Co-simulation

Combines models
Discrete Event

& Continuous Time _Stmulated ™
. . Real-time

Stepwise refinement Cantro

‘ ’ H dre

Better’ testing | | (Target*)

Concurrent engineering J{
Control
Software

(Target)

Jan Broenink ECS with Formal Methods and Engineering Models

Method MDD example, also DSE UNIVERSITY OF TWENTE.

Embedded Control System
Large Design Space A

: : Exploration of %
(Many) D.eS|gn C?homes alternatives™ Requirements «“
Restrict solution space “ =
Smaller pyramid Driﬁ?renéfgfsigq- -------- — Specification 3
choice, differen -

Examples choices solution

Modelling formalisms
& languages

Operating System choice

Parallellism

Sequential —or-
Parallel solution resource usage

Architecture
CPU FPGA, distributed central

Reachable solutions
Dependent on all choice

Abstraction level

Design Space Exploration (DSE)

Jan Broenink ECS with Formal Methods and Engineering Models 15

Contents UNIVERSITY OF TWENTE.

Introduction

Goals & Challenges

Properties Embedded Control Software
Method

Formalisms: DE/ CT

Model-driven design, Design Space Exploration
Test case: production cell

Several DE formalisms: CSP, POOSL

2 types of control computers; CPU, FPGA
Structuring the embedded software

Building blocks

Separated error handling
Conclusions & Ongoing Work

Jan Broenink ECS with Formal Methods and Engineering Models 16

Production cell demonstrator

Based on:
Stork Plastics Moulding machine

- » .-"y\ e R
| -4 IR block
detection

/.,
"~ = it L
: Extraction
Architecture: buer
CPU (ECS / FPGA programmer) _©mume Extraction belt =5
. ‘- S Mould
FPGA (digital I/0 / ECS) gy ! t | door |
1y £ N Moulding | g-2===4----" -
i i ¥ all : Rotation unit |—ff & Foig=
6 Production Cell units O Eumt 2
Action in the production process e,/ oA i B
Moulding, Extraction, : - -0
Transportation, Storage 3 Feeder belt : E_
Synchronize with neighbours - sensor
Deadlock possible on > 7 blocks g, " cPU/ || g0k movement |- Feeder
el ol direction unit
17

ECS with Formal Methods and Engineering Models

Jan Broenink

Production Cell ECS implementations UNIVERSITY OF TWENTE.

Embedded Control System Implementations
Nr. | Name Data type Target Realization
A | gCSP RTAI Linux Floating point CPU Yes
B |POOSL Floating point CPU Yes
C | Ptolemy I Floating point CPU Yes
D |gCSP QNX RTOS Floating point CPU Partial
E | gCSP Handel-C int Integer FPGA Yes
F | gCSP Handel-C float Floating point FPGA Yes
G | SystemCSP - - No
H | VDM++ ldea
Different choices
OS: Formalisms: Tools: Architecture:
RTAI Linux CSP gCSP, FDR2 <:>
QNX CCS 20-sim A
No OS Multi MoC POOSL A@
And many more gt)elftrgg/ell Seq+ (=) Par|

Jan Broenink ECS with Formal Methods and Engineering Models 18

CPU gCSP RTAI (A) UNIVERSITY OF TWENTE.

Focus: proof of concept gCSP
Proof of concept gCSP for Embedded Control Systems software
Combination of untimed CSP and real-time Linux

1/O hardware Physical system

Physical process

Sensors

Realization s I
Bottom up %
6 Semi-independent units 6 PARs T

PRIPAR for (real-time)
priority levels

Periodic timing

Filtering/
Scaling

Safety layer |=
(D

Feeder WritaP'yWh

Feedor_Controller

1]
| Mele 1I|_M ﬂ Malding_Controllar

#{ MoldingDoor WritaPWi
TimerChannels = = =
ECS SW Environment ngalcm e cgrrey|
Rendezvous with OS timer i = =i
Formal check with FDR2 il = ey Bt
Generated code from — = -

Controlier # Exrraction WritePWhi |5

Extra ll'n_l'.-'ll:lli:rlF rexfiless g | Extraction
- ‘. [] —
- 1 — —
| L i e

MuotionProfilas = FesderBall_ Conirolier FeederBelt_WriteFyWi

gCSP + 20-sim

Jan Broenink ECS with Formal Methods and Engineering Models 19

gCSP RTAI UNIVERSITY OF TWENTE.

EE S S S ESEE S S EEEEEEEEEEENS EEEEEEEEEEEEEN

//f | ;q?rwnwnwmﬁmomﬂmwmiﬁf.

|
Sequence H? Feeder_MotionProfiles

Feeder_Controller 1 Feeder WritePWM

A& - : ' = —
) —a 3
e
Molding_MotionProfiles = Molding_Controller ~ =3 MoldingDoor_WritePWM
ps ¢ - - -
L 1 s
2 T

: E):‘Lrac:ti~:)|'|E?-F:It_l'«f‘l::ltit:unF’rt;ﬂ‘iles"'(lfr ' ExtractionBelt_Controller ExtractionBelt WritePWM

g L)

|

[| — (] = —

] — [" — :

[]] s

| e :

| =

Rotation_MotionProfiles g Rotation_Controller —DI—‘RAOtation_WrtePWM

Channel

Process

1 []

1% PAR construct s -
gﬂ's PRIPAR construct FeederBelt_MotionProfiles Q FeederBelt_Controller FeederBelt_WritePWM

E L)

-— 1 —

e
L
Extraction_MotionProfiles g Extraction_Controller Extraction_WritePWM

| -—

- 1

NN NN BN NN NN BN BN BN SN B SN BN BN SR B BN DN BN BN BN BN BN BN BN BN SN BN SN B DS B B BN EE B BN BN BN BN B BN SN B

Jan Broenink ECS with Formal Methods and Engineering Models 20

CPU gCSP RTAI (A) UNIVERSITY OF TWENTE.

Results

gCSP and CSP are usable for ECS software
Graphical process & channel structure
Debugging CSP processes difficult (textual) gCSP animation

Formal verified process/channel structure (CSPm FDR2)

Real-time behaviour gCSP code + CTC++ library + RTAI Linux
Missed deadlines; large process-switch overhead; high CPU load
Challenge: Discrete Event CSP + Time Triggered loop control

Improvements
Timing implementation
CSP scheduling v.s. hard deadlines QNX RTOS version CTC++ library
Modeling
Diagram structure, Interaction, Hierarchy

Jan Broenink ECS with Formal Methods and Engineering Models 21

CPU POOSL (B) UNIVERSITY OF TWENTE.

POOSL = Parallel Object Oriented Specification Language TU/e

CCS process algebra + Timing extension
Modeling high level behaviour Embedded Systems

Input()() Requestor Replier
FOCUS EX;Laf?:ron = g]v;lft?ll;?:’:rue; Requestor Replier w» |
TeSt tlmlng ‘:'., @ {ngg]:?;fe] skip; |w>| = |
] =R _——(? in ? end {available:=false}; _ 2 |
Integration DE & CT L npu00- 3] 15 2| 2gm
] (b) Synchronization with Extraction buffer g 3 | |
. Extraction belt 2 o <«
Structured modeling Ol o q 2 = 5
E [available] out ! request; <@ <@ c"o"l | @
. 2 . S g
concurrency & Interaction c Foator e e block * |) ond | | E
[:_ = false; @ @
DE CT |nte rfaC|ng ! - . ﬁmrr?;)\l/e thz Sb(laock to Feeder belt */ | %l &
— [available=false] out ! end; | ack
T|m|ng * move back to Extr. Buffer */ | |
empty = true; | |
Output()().
Rea I Izatlon (@) Physicateractions (c) Synchronization with feeder belt (d) Two-way handshake
r
TOp-dOWH Extraction (9) .. Extraction 45— Extraction
buffer P), belt — —_» Unit
No formal check I ey L e
r e
r =ready r
Results Rotation g = grart1t g " Moulding
. i = postpone i
Separated concurrent design SW layers | Unit (p) = postp eﬁ Unit
DE (high level, CT (low level) #r Tg Te r #r Te
Feeder 9 Feeder Molding

Jan Broenink ECS with Formal Methods a Door

FPGA gCSP Handel-C UNIVERSITY OF TWENTE.

Feasibility study on motion control in FPGA
Exploit parallelism

Accurate timing Structure ECS
Model-driven design (9CSP)
Choice Handel Cl
Modeling tools o FPGA

gCSP + 20-sim (Xlinix Tools)

output: floating point control algorithm

Implementation
Handel-C programming language / hardware description language
No (soft core) CPU
Small size Xilinx Spartan |ll FPGA

Challenges
Design Space Exploration
Numerical precision versus logic cell utilization (FPGA)

Embedded Software structuring
Object orientation, processes, channels FPGA: ??77?7?

FPGA bit file¢

Jan Broenink ECS with Formal Methods and Engineering Models 23

FPGA Loop Controller UNIVERSITY OF TWENTE.

Emb,\‘eoided Softweslgeft I/O hardware Physical system
real-time real-time i Power
. W EE /‘D/A_’amplifier_
PID loop-controller algorithm SRR
Proportional, Integral & Derivative terms 2132 5% 83 1| scaing [Serse
Floating point
Feedback loop: error minimization
Error fluctuates around 0; calculation accuracy needed
P K,
| 7| setooint + ~ermor | . +
' 2@ . l.fe(t)dt Plant
Oyclad B .
de(t)
Dx, —

factor = 1 / (sampletime + tauD * beta)s

uD = factor * (tauD * previous(uD) * beta + tauD * kp * (exrror - previous(error)) + sampletime * kp * error);

ul = previous(ul) + sampletime * uD / tauls

output = ul + uDs

Jan Broenink ECS with Formal Methods and Engineering Models 24

Loop Controller Floating point alternatives UNIVERSITY OF TWENTE.

Alternative Benefit Drawback

Floating point library, High precision; re-use Very high logic utilization

CPA 2009 existing controller

Fixed point library Acceptable precision High logic utilization

External FPU High precision; re-use Only high-end FPGA;
existing controller expensive

Soft-core ¢ 1rade-off between numerical precision [5ion uniess

and logic cell utilization sign challenges
Soft-core FPU High precision; re-use Scheduler / resource manager
existing controller required
Integer, Native data type Low precision in small ranges;
CPA 2008 adaptation of the controllers
needed

Jan Broenink ECS with Formal Methods and Engineering Models 25

Realization Handel-C UNIVERSITY OF TWENTE.

void Rotation(chan* eb2ro_err, chan* ro2eb_err, chan* fb2ro_err, chan* ro2fb_err, chan* eb2ro, chan* ro2fb)

{

/* Declarations */

chan int cnt0_w encoder_ins
chan int 12 pwm_outs

chan int 2 endsw_ing L
chan int 1 magnet_outs

chan state_w setStates A 4 <5ﬁ:’TTH“:§$__;' I Q1
chan state_w currentState; Cortroller Safety | Command

i

ro2eb_err eb2ro_err

ebZro W .| |

chan state_w saflctrl;

: 7 i 4
chan state_w overrides
chan int 12 ctrl2hws \Q:::;;/. \\\\\1HEH“‘T-5_HHHH“=
chan state_w ctrl2saf; _iﬂ;ﬂ,,::E Lewl-aval_my
chan c¢nt0_w hw2ctrl; ro2t %} X Y]
chan int 1 magnet_saf; fboro_err ro2fb_err
gcsp mu Terminate
/* Process Body */ [::::]
par {
LowLevel_hw(&encoder_in, &pwm_out, &endsw_in, &magnet_out)s
seq {
Init(&encoder_in, &magnet_out, &pwm_out)s
par {

Command(&setState, ¤tState)s
Safety(&eb2ro_erxrr, &saflctrl, &ro2eb_err, &override, &encoder_in, &fb2ro_err, &pwm_out,
&setState, &xro2fb_err, &ctrl2hw, ¤tState, &ctrl2saf, &hw2ctrl)s
Controller(&saf2ctrl, &override, &eb2ro, &ctrl2hw, &ctrl2saf, &ro2fb, &hw2ctrl, &magnet_saf);
}

Terminate(&encoder_in, &magnet_out., &pwm_out);

Jan Broenink ECS with Formal Methods and Engineering Models 26

Results FPGA Usage (integer) UNIVERSITY OF TWENTE.

Real para”ellsm Production Cell - Top-level gCSP
6 Production Cell Units run parallel
Integer algorithm (no floating point)

Manual translation time consuming [=J5{==J< T e y e)
Accurate timing D] ot e
Estimated FPGA Usage .. i ull Ly oo

Xilinx Spartan 3s1500
Element LUTs (amount) | Flipflops (amount) | Memory| Used ALUs
PID controllers 13.5% (4038) 0.4% (126) 0.0% 0
Motion profiles | 0.9% (278) 0.2% (72) 0.0% 0
/O + PCI 3.6% (1090) 1.6% (471) 2.3% 0
S&C framework | 10.3% (3089) 8.7% (2616) 0.6% 0
Free 71.7% (21457)| 89.1% (26667)| 97.1% 32

PID controllers take 50% of the used space, <1% of the code
PID controllers run | | @ 1 ms with idle time 99,95%

Jan Broenink ECS with Formal Methods and Engineering Models 27

FPGA Trade-offs floating point UNIVERSITY OF TWENTE.

Sequential Pipelined Handel-C floating point library
Sequential Parallel Production Cell Unit (PCU) execution
32 bit Handel-C 16-bit Xilinx Coregen floating point
Soft-core or hard-core CPU with floating point unit.

Method Floating point\
v
Accuracy ¢ 32bit 16 bit/ 32-bit* 32-bit* ¢
Language Handel-C Handel-C ANSI-C
\ 4 v
Codegen + Softcore or
Support Library/ | Handel-C T Handel-C hardcore
IP'Core Floatlng p0|nt Plpellned wrapper CPU w|th
library FPU*
PCU execution order Seq Par
(1) (3) (5) (6) (7)
Implementation platform_/ FPGA *not yet implemented

Jan Broenink ECS with Formal Methods and Engineering Models 28

Results FPGA Usage (floating point) UNIVERSITY OF TWENTE.

Less parallelism
Sequential PCU execution, but still meeting our deadlines
Sequential floating point calculation
Central re-used (scheduled) Motion profile + PID controller process
Estimated FPGA Usage
Xilinx Spartan 3s1500

Element LUTs (amount) | Flipflops (amount) | Memory |Used ALUs

Floating point 27.4% (8191) 19.7% (5909) 0.0% 4
library + wrappers

PID controllers 4.2% (1251) 0.3% (91) 0.0% 0
Motion profiles 1.1% (314) 0.5% (163) 0.0% 0
I/0 + PCI 4.1% (1250) 1.8% (534) 2.3% 0
S&C framework 5.6% (1666) 4.2% (1250) 0.3% 0
Free 57.6% (21457) 73.5% (22005) 97.4% 28

Red = more resource usage, Green = less resource usage compared to int version
Floating point library takes 37% of the used space

Jan Broenink ECS with Formal Methods and Engineering Models 29

Evaluation UNIVERSITY OF TWENTE.

Common CPU & FPGA

Hierarchical process-oriented implementations

Layered ‘software’ structure with DE + CT/DT parts

Create re-usable standardized building blocks
Modeling process structures Implementation efficiency

Many small processes scheduling overhead

Often multiple channels between them Needed: buses
Formal verification

User-friendly model-to-formal language translation still lacking
FPGA implementations

Alternative for common CPU / PLC solutions

Accurate timing

Design time is higher and black box debugging is more difficult

Jan Broenink ECS with Formal Methods and Engineering Models 30

Contents UNIVERSITY OF TWENTE.

Introduction

Goals & Challenges

Properties Embedded Control Software
Method

Formalisms: DE/ CT

Model-driven design, Design Space Exploration
Test case: production cell

Several DE formalisms: CSP, POOSL

2 types of control computers; CPU, FPGA
Structuring the embedded software

Building blocks

Separated error handling
Conclusions & Ongoing Work

Jan Broenink ECS with Formal Methods and Engineering Models 31

Structuring ECS UNIVERSITY OF TWENTE.

Structuring the Embedded Control Software
Overview for the designer
Re-usable framework for SW and HW based designs
Building blocks / design patterns
Separate normal flow from fault handling
Process-oriented approach
Inspired by CSP, block diagrams, bond graphs
Describe concurrent behaviour
Structuring in layers is supported
Use benefits of CSP (checking)

Embedded software 1/O hardware Physical system
’\H'n Slotft |-llatr' Power
real-time real-ume real-tme W
D/A > o »{ Actuators
> clo fo| 5 I/ amplifier
8132 8l gl > S T—
o &S00 5 = sical process
3R E e
HEREI R K Filtering/
<58 =l ol g iltering
a - = ol » -1-'A/D<- Scaling 41— Sensors

Jan Broenink ECS with Formal Methods and Engineering Models 32

ECS structure Production cell UNIVERSITY OF TWENTE.

6 independent Production Cell Units
Interaction: handshake for block delivery
No central supervisor

¢ | - axtraction robot
Extraction belt Extraction
PCLU PCU j
L
Rotation Molder door
FCU PCU
I
Feeder bell Feeder
PCU PCU
> —_—

— CON Ol Rendesyvous channeHappy Tow

Jan Broenink ECS with Formal Methods and Engineering Models 33

ECS structure Top level

Add Error communication

Inform neighbours when needed

UNIVERSITY OF TWENTE.

—— <
_________ Extraction belt o Extraction PR
:' PCU PCU '
. 0 q o
2 v _
Rotation Molder door
PCU PCU
) A . 4
E .. Pa— .. E
: Feeder belt Feeder ;
"""" - PCU B PCU
2 —

Controller Rendezvous channel/Happy flow
----------- # Error channel

PCU: Production cell Control Unit

ECS with Formal Methods and Engineering Models 34

Jan Broenink

ECS structure one PCU UNIVERSITY OF TWENTE.

_ . 0 . FPGA Host PC
I From Previous PCU To previous s From previous
PCU ' PCU
. .] '
l Production Cell Unit (PCU) ¢
'
State Out : :
'< Stateln M ' ' — ™ PCl-—* User
' .
Controller | €---, I ' : Command -« —bus «.— Interface
' 0
Controllerl I : .
override ' ’ | ‘
- '
: | : v |
0
0 > State InJ
: =l < S out
“Sensors | Safety " Sensors Low-level
Actuators Actuators Hardware
0 ;
0 0
——
To next From Next : ¢ To Next
Vv PCU PCU : v PCU To Production Cell

From Production Cell

» Controller handshake channel — e - State channel
- —— == - User interface channel Hardware interface channel
----------- » Error channel

Jan Broenink ECS with Formal Methods and Engineering Models 35

ECS structure Controller UNIVERSITY OF TWENTE.

Production Cell Unit Controller

Sequence controller: determine order of actions
Setpoint generator: generate motion profiles
Loop controller: control law

From previous PCU

State in FPGA
v ¥
o w—— .
request . setpoint
Sequence Controller Setpoint generator =— — Loop Controller
« L] O L] L]
I — ready done
[i
[]
(]
l I override
A 4 Digital Out
Tonext PCU State out Digital In P Controller handshake channel Encoder PWM

p Motion profile channel
........... p Error channel
p State channel

Hardware interface channel

Jan Broenink ECS with Formal Methods and Engineering Models 36

ECS structure PCU Safety layer UNIVERSITY OF TWENTE.

Production Cell Unit Safety layer
Exception catcher: detect errors
Exception handler: handle & select required action
State handler: put PCU in a safe state

Controller

’
' override from
toController | fromController prevErrOuté :prevErrIn ControIIeT Controller FPGA
' . 1
' [Safety] 4 :
' Yy :
setState
. exception . errState — | —
Exception catcher s-=<<-- » Exception handler se=<-- » State handler currentState
_______ _>
v
A .
[|
from to . '
Low-level Low-level hextErrin hextErrOut
Hardware Hardware . :
; \ 4
Encoder, End PWM, magnet ~ Sends occurred o - User interface channel
switches, IR exception or
defectors sanitycheck === eeseesscees p Error channel
failure P State channel

Hardware interface channel

Jan Broenink ECS with Formal Methods and Engineering Models 37

axtraction rabot

ECS structure Control Sequence i i

=== axiraction balt i 1
S rotalion robot
P 2 '..F
S, _
o i
|

' feeder bell

Feeder belt Feeder Moulder door Extractor Extraction belt

Flow normal operation

molding machins

Rotation arm

- Feeder home? »

Transport block to
feeder, then stop

Feeder out—»

——Door closed?—»
Push block to the
door

- Open the door—»

- Extactor home? »
Door open? — »

Bring feeder Opir} ioor o
home ——Pick up block—»
Close door Pick and place
block
——Transport block—»
Transport block to
rotation arm
- Pick up block — »
< Transport block

——Feeder home?—»

Jan Broenink ECS with Formal Methods and Engineering Models 38

ECS structure Error propagation UNIVERSITY OF TWENTE.

Flow of error operation

Feeder belt Feeder Moulder door

\
Set feeder state to
‘home’

< stop ‘ open >

Feeder belt

Feeder |

Jan Broenink ECS with Formal Methods and Engineering Models 39

Conclusions & Ongoing work UNIVERSITY OF TWENTE.

Insight maturity (academic) tools for ECS design
Standardized process-oriented layered ECS structure
Trade-off CPU / FPGA solution
CPU: short design time, real-time behaviour critical issue
FPGA: longer design time, more complicated, accurate timing

Design Space Exploration results
7 different implementations for same setup
Valuable information for improvement design methods & tooling

Ongoing work

gCSP version 2
Improvement Design Methodology

Jan Broenink ECS with Formal Methods and Engineering Models 40

UNIVERSITY OF TWENTE.

CPU controlled
gCSP RTAI version

CPU controlled
Ptolemy version
Compared to 3D model

FPGA controlled
Parallel, integer controllers

Jan Broenink ECS with Formal Methods and Engineering Models

UNIVERSITY OF TWENTE.

Embedded Control Software DeS|gn
with Formal Methods and
Engineering models

BCS FACS / FME evening seminar

% BCS, London, 13-09-2010

[1 - I

Control Engineering, Department of Electrical Engineering,
University of Twente, The Netherlands

