
Contracting and Proving Classes with Models
Extended Abstract

Bernd Schoeller

bernd.schoeller@inf.ethz.ch

Chair of Software Engineering, ETH Zurich, Switzerland

Introduction

Functional specification and verification often requires specialized mathemati-
cians to do the work. Software development and proving correctness are regarded
as separate activities.

We want developers to do the specification and verification. One of the
promising approaches for letting developers create specifications is the “Design
by Contract” methodology [7] as present in the Eiffel language [8]. Contracts doc-
ument the developer’s intend during an early phase of development and make
assumptions on the existing system explicit. They establish a functional specifi-
cation without leaving the notation of the programming language.

The goal of this thesis is to integrate formal methods and Design by Contract
into a common proof technology that does not require developers to learn a new
notation and at the same time improves the quality of the software by using
fully automated proofs. We try to achieve this goal by reducing the conceptual
gap between Eiffel and the prover through the use of models and model-based
contracts.

Models and model-based contracts for verification

A model is a mathematical structure that captures the state of a computation
on an abstract level [6]. We want to enable the developer to formulate contracts
using models. To do this, we have to integrate a notation into Eiffel to express
and reason about theses mathematical structures.

We can do this without touching the Eiffel language: we have developed
a library that captures typed set theory on finite sets. This library provides
standard implementations of immutable data structures like sets, relations or
sequences. The set theory is derived from the notation used in the B method [1].
B has proved itself to be well suited for complex formalizations.

Contracts that are described using this library can be directly mapped into
the mathematical language of a theorem prover. We call such contracts “model-
based contracts”. They allow us to hide the provers notation from the user.

The result is a major improvement in the expressiveness of contracts. Also, it
reduces the conceptual gap between predicates in theorem provers and boolean
functions in Eiffel.



A major part of our work is to use these model-based contracts for functional
verification. As theorem prover, we use the Boogie tool that is developed for
Spec# at Microsoft [2]. Boogie itself uses Simplify [5] as its proof engine.

Boogie defines an intermediate language called BoogiePL [4]. BoogiePL is
an imperative language targeted for verification. We translate Eiffel code and
contracts into BoogiePL. By using BoogiePL instead of Simplify directly, we
can avoid the burden of modeling state change in first-order logic.

Current status

We have developed a model library called “MML” (mathematical model library)
[12, 11]. The library has been released and available from our website. Experi-
mental result on model-based specification for existing libraries are being pre-
pared.

Work was started on an automatic translation from Eiffel to BoogiePL called
“Ballet”. We were able to translate some simple classes and managed to reveal
bugs caused by aliasing of references.

Expected results

1. We develop a model library that enables developers to improve their con-
tracts. Together with this library, we provide methodology for implementing
models and model-based contracts.

2. We apply the methodology to existing, production quality libraries.
3. A background theory is developed for the direct translation of Eiffel model-

based contracts into BoogiePL first-order set theory.
4. Automatic translation tool is provided. This tools compiles Eiffel into Boo-

giePL, including the identification and translation of model based contracts
into the background theory.

5. We integrate the whole process into an interactive development environment
with “on the fly” verification capabilities, similar to the ones provided with
Spec#.

Scientific contribution

We tightly integrate models and model-based contracts into the specification and
verification technology for object-oriented programs. The model library itself is
derived from a mathematical theory. Models are directly translated into the
language of the underlying proof engine. The mathematical theory is translated
into a background theory.

With Eiffel as an established programming language, we can rely on a large
set of existing code to produce experimental results. We have started to contract
existing libraries using models. This code has been used in large commercial
applications for years. We were able to show significant errors in the design and
implementation of such libraries using model-based contracts. Some of these
errors are documented in [12] and its references.



Open questions

– BoogiePL and existing formalisms rely on the modification clauses to avoid
the frame problem [10]. This contradicts the “open world” perspective of
modular reasoning. What are the consequences? Can we avoid using modifies
clauses? Can the use of models improve this situation?

– Classes that rely on non-trivial pointer structures (for example linked lists)
require complex abstraction functions to create the models. How can we
describe this abstraction function efficiently?

– How efficient is the prover when working with the background theory? Is the
whole approach feasible?

Related work

The work presented here is strongly related to Spec# [2] and its integration into
software development. The work on models is related to the efforts done in JML
[3]. The overall object-oriented model for verification is based on the work done
by Peter Müller on modular specification [9].

References

1. J.-R. Abrial. The B-Book – assigning programs to meanings. Cambridge University
Press, 1996.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS 2004, LNCS 3362. Springer, 2004.

3. Y. Cheon, G. T. Leavons, M. Sitaraman, and S. Edwards. Model variables: Cleanly
supporting abstraction in design by contract. Technical Report 03-10, Iowa State
University, April 2003.

4. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-
ing object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Re-
search, March 2005.

5. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, July 2003.

6. C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972.

7. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, Oct. 1992.
8. B. Meyer. Eiffel: the language. Object-Oriented Series. Prentice Hall, New York,

NY, 1992.
9. P. Müller. Modular Specification and Verification of Object-Oriented Programs,

volume 2262 of LNCS. Springer-Verlag, 2002.
10. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of

frame properties in JML. Concurrency and Computation: Practice and Experi-

ence, 15:117–154, 2003.
11. B. Schoeller. Strengthening eiffel contracts using models. In Hung Dang Van and

Zhiming Liu, editors, FACS’03, number 284 in UNU/IIST Report, pages 143–158,
September 2003.

12. B. Schoeller, T. Widmer, and B. Meyer. Making specifications complete through
models. In R. Reussner, J. Stafford, and C. Szyperski, editors, Architecting Systems

with Trustworthy Components, volume 3938. Springer-Verlag, 2006.


