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Abstract. Slicing is a well-established program analysis technique that
has applications in debugging, program understanding and model reduc-
tion. This paper presents an approach to slicing formal specifications
based on communicating extended automata.

1 Introduction

Almost thirty years ago, Weiser introduced the concept of program slicing [5]
as a static analysis technique, aimed at facilitating the debugging and under-
standing of programs expressed in classical imperative programming languages.
Informally, a slice of a program P is a set of statements of P, which are relevant
to the computations performed at some point(s) of interest in P.

In recent years, the slicing literature has become extensive, therefore some
useful surveys have been published [4]. Considering the evolution of specification
languages, and their wide use in formal methods, we address the problem of slic-
ing formal specifications based on communicating extended automata. Finding
a solution is not straightforward because some significant differences lie between
the features of communicating extended automata and those of imperative pro-
grams, mainly the unique end node property and communications via channels.
In this paper we state the new definitions that form the cornerstone of our
approach to slicing specifications based on communicating extended automata.
Prospects of our work appear in several fields of formal methods, including sim-
ulation, test-case generation and model checking.

2 Communicating Extended Automata

Extended input/output Labelled Transition Systems (ELTS) [3] are automata
used to specify the behavior of reactive systems. ELTS extend classical labelled
transition systems by enabling communications via channels, and assignments
of values to variables.

For the remainder of this paper, we assume the reader is familiar with some
first-order logic notions: terms and quantifier-free formulas of a first order lan-
guage. Let £ be a first order language, C' a set of channel symbols, V' a set of
variables, and 7 a silent action. We note J¢ (V') the set of Z-terms, and F (V)
the set of quantifier-free .Z-formulas, whose variables are elements of V.



Definition 1 (Communication actions). The .£-communication-actions de-
fined over C and V are the elements of Act»(C,V), such that:

Acto(C, V) ={r}tU{c?z|ce ChzeV}U{cdt|ce CAtE T¥(V)}

Definition 2 (Extended input/output LTS (ELTS)). An ELTS defined
over £,V and C is a tuple (S, s, T,V,C)w where S is a set of states, sg € S is
the initial state and T C S x Actx(C,V)x Fo(V) x T (V)Y x S is a transition
relation, where T (V)Y is the set of functions from V to Te(V).

3 Slicing Formal Specifications

One of the main approaches to calculating program slices is dependence-based,
i.e it involves the computation of dependence relations between the program
statements. In a dependence graph, nodes represent the program statements and
edges represent the dependence relations. When all the dependence relations are
transitive, slicing is a simple reachability problem in the dependence graph [4].

In our framework, we consider formal specifications as several ELTS that run
concurrently, and communicate with each other and with their environment.
Formally, a specification .Z« is a set of ELTS, each of which is defined over the
first-order language .£. Our approach to slicing formal specifications based on
ELTS is inspired on previous works on dependence-based program slicing. We
extend to ELTS the classical notions of control dependence and data dependence,
then we define an extra dependence relation to handle the data flows across
communication channels. Having calculated the three sets of dependences (i.e
the dependence graph), our solution to a slicing problem is the solution to a
reachability problem in the dependence graph. For the remainder of this section,
we assume & = (5, 50,1, V,C) e is an ELTS, and we call path in & a sequence of
consecutive transitions in 7'.

The traditional definition of control dependence assumes the structure under
analysis satisfies the unique end node property, and thus is not directly applicable
to ELTS. Ranganath et al. [2] addressed this issue in a recent work on which our
definition of control dependence is based.

Definition 3 (Control dependence (tr’ <, tr)). A transition tr € T is
control dependent on a transition tr’ € T if tr’ has at least two successors, tr)
and trhy, such that: for all mazimal paths from tr] in &, tr always occurs, and
there exists a mazimal path from try in & on which tr does not occur.

Let tr = (s1,aq, f,0,52) be a transition in T, and = be a variable in V. We
say x is defined at tr if either o(x) # z, or a = ¢?z for some ¢ € C; and z is
used at tr if x is a variable of f, or there is a term ¢ € J% (V') such that x is a
variable of term ¢, and either o(y) = t for some y € V, or a = clt for some ¢ € C.

Definition 4 (Data dependence (tr’ A, tr)). A transition tr € T is data
dependent on a transition tr' € T if there exists a variable x € V and a path
p={(tr,...,tr) in & such that x is defined at tr', x is used at tr, and for all
tr'” € (p\{tr'}), = is not defined at tr".



Informally, there is a communication dependence between two transitions in
two different ELTS if there exists a channel that potentially allows a data flow be-
tween these two transitions. Let .%« be a specification; let & = (S, s0,T,V,C)
and & = (9,5, T, V', C") ¢ be two ELTS in L.

Definition 5 (Communication dependence (tr' <% tr)). A transition in
T, tr = (s1,a, f,0,s2), is communication dependent on a transition in T, tr' =
(sh,d, f',0’,sh), if there exists a communication channel ¢ € C N C’ such that
a = clx for somex €V, and a’ = clt for some t € Tp(V').

A transition tr is dependent on a transition tr’ (¢r/ 4, tr), if either ¢r’ cd, tr,

! 4, tr, or tr’ <25 tr. Informally, a slice of a specification is a set of transitions,
on which the slicing criterion (itself a set of transitions) is ¢ransitively dependent.

Definition 6 (Slice of a specification). Let .Yy = {&, ..., &k} be a specifi-
cation, for some k > 0; for all 0 < i < k, we note T; the set of transitions in &;.
Let Crit C Ugci<p {Ti}; the following set is a slice wrt. Crit:

d
Slicecri = {tr’ | tr € Crit Atr' —* tr}

4 Open Issues and Conclusion

Due to the lack of space, many important issues were not discussed here, in par-
ticular the design of methods to perform on ELTS the dataflow analyses required
to compute the dependences defined above; whether the dependence relations
are always transitive on ELTS (it involves the precision of our definition of a
slice); how to handle shared variables across ELTS etc. These are some of the
issues that will be addressed in future work.

The main result of this paper is that the benefits of slicing can be obtained
on formal specifications based on communicating extended automata. We are
currently implementing this technique in the Agatha tool [1], allowing us to per-
form slicing for specification debugging and understanding, as a straightforward
application. We will then investigate the advantages of slicing for specification
validation and simulation, and test-case generation.
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